Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Advanced
New in RUL
About RUL
In numbers
Help
Sign in
Details
Solutions of Pascali systems attached to convex boundaries
ID
Drinovec-Drnovšek, Barbara
(
Author
),
ID
Kuzman, Uroš
(
Author
)
PDF - Presentation file. The content of the document unavailable until 08.01.2026.
MD5: FBA61CBFE68B9DD53272BA7D80FB4765
URL - Source URL, Visit
https://www.tandfonline.com/doi/full/10.1080/17476933.2024.2442732
Image galllery
Abstract
Given a bounded strictly convex domain $\Omega \Subset {\mathbb C}$ and a point $q \in \Omega$ we construct a continuous solution of the Pascali-type elliptic system of differential equations that is centered in $q$, maps the unit disc into $\Omega$ and the unit circle into $\partial\Omega$.
Language:
English
Keywords:
Pascali system
,
nonlinear bondary value problem
,
proper map
,
strictly convex domain
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Author Accepted Manuscript
Year:
2025
Number of pages:
Str. 1999–2008
Numbering:
Vol. 70, no. 11
PID:
20.500.12556/RUL-175597
UDC:
517.5
ISSN on article:
1747-6933
DOI:
10.1080/17476933.2024.2442732
COBISS.SI-ID:
221318659
Publication date in RUL:
05.11.2025
Views:
88
Downloads:
56
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Complex variables and elliptic equations
Publisher:
Taylor & Francis
ISSN:
1747-6933
COBISS.SI-ID:
513019929
Licences
License:
CC BY-NC 4.0, Creative Commons Attribution-NonCommercial 4.0 International
Link:
http://creativecommons.org/licenses/by-nc/4.0/
Description:
A creative commons license that bans commercial use, but the users don’t have to license their derivative works on the same terms.
Projects
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
P1-0291
Name:
Analiza in geometrija
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
J1-3005
Name:
Kompleksna in geometrijska analiza
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
N1-0137
Name:
Nelinearni Valovi in Spektralna Teorija
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
N1-0237
Name:
Holomorfne parcialne diferencialne relacije
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
BI-US/22-24-079
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back