Details

Solutions of Pascali systems attached to convex boundaries
ID Drinovec-Drnovšek, Barbara (Author), ID Kuzman, Uroš (Author)

.pdfPDF - Presentation file. The content of the document unavailable until 08.01.2026.
MD5: FBA61CBFE68B9DD53272BA7D80FB4765
URLURL - Source URL, Visit https://www.tandfonline.com/doi/full/10.1080/17476933.2024.2442732 This link opens in a new window

Abstract
Given a bounded strictly convex domain $\Omega \Subset {\mathbb C}$ and a point $q \in \Omega$ we construct a continuous solution of the Pascali-type elliptic system of differential equations that is centered in $q$, maps the unit disc into $\Omega$ and the unit circle into $\partial\Omega$.

Language:English
Keywords:Pascali system, nonlinear bondary value problem, proper map, strictly convex domain
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Author Accepted Manuscript
Year:2025
Number of pages:Str. 1999–2008
Numbering:Vol. 70, no. 11
PID:20.500.12556/RUL-175597 This link opens in a new window
UDC:517.5
ISSN on article:1747-6933
DOI:10.1080/17476933.2024.2442732 This link opens in a new window
COBISS.SI-ID:221318659 This link opens in a new window
Publication date in RUL:05.11.2025
Views:88
Downloads:56
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Complex variables and elliptic equations
Publisher:Taylor & Francis
ISSN:1747-6933
COBISS.SI-ID:513019929 This link opens in a new window

Licences

License:CC BY-NC 4.0, Creative Commons Attribution-NonCommercial 4.0 International
Link:http://creativecommons.org/licenses/by-nc/4.0/
Description:A creative commons license that bans commercial use, but the users don’t have to license their derivative works on the same terms.

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0291
Name:Analiza in geometrija

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3005
Name:Kompleksna in geometrijska analiza

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0137
Name:Nelinearni Valovi in Spektralna Teorija

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0237
Name:Holomorfne parcialne diferencialne relacije

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:BI-US/22-24-079

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back