Details

Odstranjevanje senc z ortofoto slik
ID Galjot, Luka (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window, ID Lesar, Žiga (Comentor)

.pdfPDF - Presentation file, Download (24,31 MB)
MD5: A6A6E970F5C67B7D1AA6B711984CD9A8

Abstract
V magistrski nalogi obravnavamo problem odstranjevanja senc iz ortofoto slik, kar predstavlja izziv zaradi pomanjkanja ustreznih učnih podatkov. Za reševanje problema smo razvili inovativen pristop. Ta vključuje izdelavo lastne zbirke z generiranjem podatkov s pomočjo okolja Unity, kjer uporabimo ortofoto kot sloj terena in 3D modele stavb ter rastlinja za izris realističnih senc, ter učenje nevronske mreže U-Net. Model smo ovrednotili na različnih učnih zbirkah in nevronskih mrežah. Ugotovili smo, da je kakovost podatkov ključna za uspešnost učenja, pri čemer naša podatkovna zbirka ponuja konkurenčne rezultate. Glavna prispevka naloge sta obširna učna zbirka in naučen model odstranjevanja senc.

Language:Slovenian
Keywords:sence, odstranjevanje senc, strojno učenje, ortofoto
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-175562 This link opens in a new window
COBISS.SI-ID:257404163 This link opens in a new window
Publication date in RUL:04.11.2025
Views:125
Downloads:27
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Removing shadows from orthophoto images
Abstract:
In the master's thesis, we address the problem of shadow removal from orthophotography images, which presents a challenge due to the lack of suitable training data. To tackle this issue, we developed an innovative approach. This involves creating our own dataset by generating data using the Unity environment, where we use the orthophoto as a terrain layer and 3D models of buildings and vegetation to render realistic shadows, followed by training a U-Net neural network. We evaluated the model on various training datasets and neural networks. We found that data quality is crucial for successful learning, as evidenced by our dataset's competitive results. The main contributions of the thesis are a comprehensive training dataset and a trained shadow removal model.

Keywords:shadows, shadow removal, machine learning, orthophoto

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back