Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Advanced
New in RUL
About RUL
In numbers
Help
Sign in
Details
$F$-birestriction monoids in enriched signature
ID
Kudryavtseva, Ganna
(
Author
),
ID
Lemut Furlani, Ajda
(
Author
)
PDF - Presentation file,
Download
(639,32 KB)
MD5: 4CB13E0F6A34699F506DF41AB5B65DA5
URL - Source URL, Visit
https://link.springer.com/article/10.1007/s40840-025-01995-2
Image galllery
Abstract
Motivated by recent interest to $F$-inverse monoids, on the one hand, and to restriction and birestriction monoids, on the other hand, we initiate the study of $F$-birestriction monoids as algebraic structures in the enriched signature $(\cdot, \, ^*, \,^+, \, ^\mathfrak{m},1)$ where the unary operation $(\cdot)^\mathfrak{m}$ maps each element to the maximum element of its $\sigma$-class. We find a presentation of the free $F$-birestriction monoid ${\mathsf{FFBR}}(X)$ as a birestriction monoid ${\mathcal F}$ over the extended set of generators $X\cup\overline{X^+}$ where $\overline{X^+}$ is a set in a bijection with the free semigroup $X^+$ and encodes the maximum elements of (non-projection) $\sigma$-classes. This enables us to show that ${\mathsf{FFBR}}(X)$ decomposes as the partial action product $E({\mathcal I})\rtimes X^*$ of the idempotent semilattice of the universal inverse monoid ${\mathcal I}$ of ${\mathcal F}$ partially acted upon by the free monoid $X^*$. Invoking Schützenberger graphs, we prove that the word problem for ${\mathsf{FFBR}}(X)$ and its strong and perfect analogues is decidable. Furthermore, we show that ${\mathsf{FFBR}}(X)$ does not admit a geometric model based on a quotient of the Margolis-Meakin expansion $M({\mathsf{FG}}(X), X\cup \overline{X^+})$ over the free group ${\mathsf{FG}}(X)$, but the free perfect $X$-generated $F$-birestriction monoid admits such a model.
Language:
English
Keywords:
birestriction monoid
,
F-birestriction monoid
,
free F-birestriction monoid
,
inverse monoid
,
F-inverse monoid
,
Margolis-Meakin expansion
,
Schützenberger graph
,
partial action
,
partial action product
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Publication date:
01.11.2025
Year:
2025
Number of pages:
36 str.
Numbering:
Vol. 48, iss. 6, article no. 212
PID:
20.500.12556/RUL-175543
UDC:
512
ISSN on article:
0126-6705
DOI:
10.1007/s40840-025-01995-2
COBISS.SI-ID:
255627779
Publication date in RUL:
03.11.2025
Views:
101
Downloads:
25
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Bulletin of the Malaysian Mathematical Sciences Society
Shortened title:
Bull. Malays. Math. Sci. Soc.
Publisher:
Malaysian Mathematical Society, Springer
ISSN:
0126-6705
COBISS.SI-ID:
515781657
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Secondary language
Language:
Slovenian
Keywords:
biomejitveni monoid
,
F-biomejitveni monoid
,
prosti F-biomejitveni monoid
,
inverzni monoid
,
F-inverzni monoid
,
Margolis-Meakinova razširitev
,
Schützenbergerjev graf
,
parcialno delovanje
,
produkt glede na parcialno delovanje
Projects
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
P1-0288
Name:
Algebra in njena uporaba
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
J1-60025
Name:
Interakcija aritmetičnih lastnosti in algebraične strukture v nekomutativnih kolobarjih
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back