Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Advanced
New in RUL
About RUL
In numbers
Help
Sign in
Details
Vertex partitioning and $p$-energy of graphs
ID
Akbari, Saieed
(
Author
),
ID
Kumar, Hitesh
(
Author
),
ID
Mohar, Bojan
(
Author
),
ID
Pragada, Shivaramakrishna
(
Author
)
PDF - Presentation file,
Download
(368,62 KB)
MD5: 7F4FE6885BB645FD88354765C537BDD7
URL - Source URL, Visit
https://www.sciencedirect.com/science/article/pii/S0024379525002617
Image galllery
Abstract
For a Hermitian matrix $A$ of order $n$ with eigenvalues $\lambda_1(A)\ge \cdots\ge \lambda_n(A)$, define $\mathcal{E}_p^+(A)=\sum_{\lambda_i > 0} \lambda_i^p(A), \quad \mathcal{E}_p^-(A)=\sum_{\lambda_i<0} |\lambda_i(A)|^p$, to be the positive and the negative $p$-energy of $A$, respectively. In this note, first we show that if $A=[A_{ij}]_{i,j=1}^k$, where $A_{ii}$ are square matrices, then $\mathcal{E}_p^+(A)\geq \sum_{i=1}^{k} \mathcal{E}_p^+(A_{ii}), \quad \mathcal{E}_p^-(A)\geq \sum_{i=1}^{k} \mathcal{E}_p^-(A_{ii})$, for any real number $p\geq 1$. We then apply the previous inequality to establish lower bounds for $p$-energy of the adjacency matrix of graphs.
Language:
English
Keywords:
adjacency matrix
,
graph energy
,
positive p-energy
,
negative p-energy
,
Schatten p-norm
,
vertex partition
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FMF - Faculty of Mathematics and Physics
Publication status:
Published
Publication version:
Version of Record
Publication date:
01.11.2025
Year:
2025
Number of pages:
Str. 96-107
Numbering:
Vol. 724
PID:
20.500.12556/RUL-175449
UDC:
519.17
ISSN on article:
0024-3795
DOI:
10.1016/j.laa.2025.06.009
COBISS.SI-ID:
241730563
Publication date in RUL:
28.10.2025
Views:
110
Downloads:
58
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Linear algebra and its applications
Shortened title:
Linear algebra appl.
Publisher:
Elsevier
ISSN:
0024-3795
COBISS.SI-ID:
1119247
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Projects
Funder:
EC - European Commission
Project number:
101071836
Name:
KARST: Predicting flow and transport in complex Karst systems
Acronym:
KARST
Funder:
NSERC - Natural Sciences and Engineering Research Council of Canada
Funding programme:
Discovery Grant
Project number:
R832714
Funder:
ARIS - Slovenian Research and Innovation Agency
Project number:
N1-0218
Name:
Prepletanje geometrije, topologije in algebre v strukturni in topološki teoriji grafov
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back