Details

Vertex partitioning and $p$-energy of graphs
ID Akbari, Saieed (Author), ID Kumar, Hitesh (Author), ID Mohar, Bojan (Author), ID Pragada, Shivaramakrishna (Author)

.pdfPDF - Presentation file, Download (368,62 KB)
MD5: 7F4FE6885BB645FD88354765C537BDD7
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0024379525002617 This link opens in a new window

Abstract
For a Hermitian matrix $A$ of order $n$ with eigenvalues $\lambda_1(A)\ge \cdots\ge \lambda_n(A)$, define $\mathcal{E}_p^+(A)=\sum_{\lambda_i > 0} \lambda_i^p(A), \quad \mathcal{E}_p^-(A)=\sum_{\lambda_i<0} |\lambda_i(A)|^p$, to be the positive and the negative $p$-energy of $A$, respectively. In this note, first we show that if $A=[A_{ij}]_{i,j=1}^k$, where $A_{ii}$ are square matrices, then $\mathcal{E}_p^+(A)\geq \sum_{i=1}^{k} \mathcal{E}_p^+(A_{ii}), \quad \mathcal{E}_p^-(A)\geq \sum_{i=1}^{k} \mathcal{E}_p^-(A_{ii})$, for any real number $p\geq 1$. We then apply the previous inequality to establish lower bounds for $p$-energy of the adjacency matrix of graphs.

Language:English
Keywords:adjacency matrix, graph energy, positive p-energy, negative p-energy, Schatten p-norm, vertex partition
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Publication date:01.11.2025
Year:2025
Number of pages:Str. 96-107
Numbering:Vol. 724
PID:20.500.12556/RUL-175449 This link opens in a new window
UDC:519.17
ISSN on article:0024-3795
DOI:10.1016/j.laa.2025.06.009 This link opens in a new window
COBISS.SI-ID:241730563 This link opens in a new window
Publication date in RUL:28.10.2025
Views:110
Downloads:58
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Linear algebra and its applications
Shortened title:Linear algebra appl.
Publisher:Elsevier
ISSN:0024-3795
COBISS.SI-ID:1119247 This link opens in a new window

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.

Projects

Funder:EC - European Commission
Project number:101071836
Name:KARST: Predicting flow and transport in complex Karst systems
Acronym:KARST

Funder:NSERC - Natural Sciences and Engineering Research Council of Canada
Funding programme:Discovery Grant
Project number:R832714

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0218
Name:Prepletanje geometrije, topologije in algebre v strukturni in topološki teoriji grafov

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back