Details

Napovedovanje koncentracij fitoplanktonskih pigmentov v Tržaškem zalivu s pomočjo metod strojnega učenja
ID Bengeri, Katja (Author), ID Faganeli Pucer, Jana (Mentor) More about this mentor... This link opens in a new window, ID Vodopivec, Martin (Comentor)

.pdfPDF - Presentation file, Download (9,22 MB)
MD5: D0955A792792BCCA8EB1591A4FA22E01

Abstract
Fitoplankton predstavlja pomemben pokazatelj ekološkega stanja morskega okolja. Ker so in-situ meritve težko dostopne in časovno zahtevne za analizo, smo raziskali alternativne metode za ocenjevanje koncentracij fitoplanktonskih pigmentov na podlagi različnih okoljskih parametrov ter raziskali možnost njihove napovedi v Tržaškem zalivu z uporabo modelov strojnega učenja. V sodelovanju s strokovnjaki s področja smo izbrali niz ekološko relevantnih značilk za oblikovanje vhodnega nabora podatkov, katerega smo ustrezno predprocesirali. V raziskavi smo uporabili različne regresijske modele ter nevronske mreže, pri čemer smo zaradi omejenega števila in-situ meritev pigmentov uporabili strategijo učenja s prenosom znanja. Model smo najprej trenirali na satelitskih meritvah klorofila a in ga nato dodatno prilagodili na in-situ meritvah. V ta namen smo uporabili večslojne perceptrone (MLP) in konvolucijske nevronske mreže (CNN). Uporaba učenja s prenosom znanja je pokazala izboljšanje napovedne natančnosti, kar kaže na njen potencial za izboljšanje ocenjevanja fitoplanktonskih pigmentov v podatkovno omejenih morskih okoljih.

Language:Slovenian
Keywords:strojno učenje, okoljske znanosti, učenje s prenosom znanja, koncentracije fitoplanktonskih pigmentov
Work type:Master's thesis/paper
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-175396 This link opens in a new window
UDC:004.8:502
COBISS.SI-ID:254424579 This link opens in a new window
Publication date in RUL:25.10.2025
Views:133
Downloads:58
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Forecasting phytoplankton pigment concentrations in the Gulf of Trieste with machine learning techniques
Abstract:
Phytoplankton represents an important indicator of the ecological state of the marine environment. As in-situ measurements are difficult to obtain and time-consuming to analyze, we explored alternative methods to estimate phytoplankton pigment concentrations from other environmental parameters and investigated the feasibility of estimating phytoplankton pigment concentrations in the Gulf of Trieste using machine learning models. A set of ecologically relevant features was selected in collaboration with domain experts to construct the input dataset, which was preprocessed including appropriate handling of missing values. The study employs basic regression models and neural networks, and since real pigment measurements are scarce, we employed a transfer learning strategy: we pre-trained a model on satellite-derived chlorophyll-a data and fine-tuned it with ground measurements. For this purpose, multilayer perceptrons (MLPs) and convolutional neural networks (CNNs) were applied. The application of transfer learning led to an improvement in predictive performance, demonstrating its potential to enhance phytoplankton pigment estimation in data-limited marine environments.

Keywords:machine learning, environmental sciences, transfer learning, concentrations of phytoplankton pigments

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back