Details

Multi-objective workload scheduling framework for Kubernetes using neural algorithmic reasoning
ID Gale, Timotej (Author), ID Jurič, Branko Matjaž (Mentor) More about this mentor... This link opens in a new window, ID Fortuna, Carolina (Comentor)

.pdfPDF - Presentation file, Download (6,18 MB)
MD5: F8E7DA59BF180B306F73D077F3DD291E

Abstract
Modern cloud native applications operate in increasingly complex, dynamic and distributed environments, where efficient workload scheduling is essential to ensure performance, cost efficiency, and compliance with operational constraints. This thesis presents a multi-objective scheduling framework for Kubernetes that combines a graph-based modeling and representation approach with neural algorithmic reasoning (NAR). By representing workloads and infrastructure as graphs, the framework captures dependencies, resource requirements, and constraints while enabling multi-layer observability. To design and evaluate the framework, existing Kubernetes simulation tools were analyzed, and a tailored environment was developed to test diverse scheduling strategies on semi-realistic datasets. Multiple neural models were implemented and trained, including variants with structured numerical inputs and text-conditioned encoder-decoder architectures, to assess the impact of multimodal supervision and modular training. Experimental results show that NAR-based models consistently outperform traditional rule-based schedulers, achieving significant reductions in constraint violations and scheduling costs while maintaining scalability with growing problem size. Text-conditioned models further improve efficiency and adherence to constraints, albeit with a considerable trade-off in assignment completeness. In general, the research demonstrates the effectiveness of integrating symbolic graph modeling with neural reasoning for adaptive and scalable workload scheduling in complex computing environments. The graph-based representation of infrastructure additionally improves transparency, offering a promising foundation for more intelligent orchestration of cloud and edge workloads.

Language:English
Keywords:Kubernetes, workload scheduling, neural algorithmic reasoning, graph modeling, multi-objective optimization, edge-cloud computing
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-175363 This link opens in a new window
COBISS.SI-ID:255938819 This link opens in a new window
Publication date in RUL:24.10.2025
Views:147
Downloads:32
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Večciljno ogrodje za razvrščanje bremen v okolju Kubernetes z nevronskim algoritmičnim sklepanjem
Abstract:
Sodobne oblačne aplikacije delujejo v vse bolj kompleksnih, dinamičnih in porazdeljenih okoljih, kjer je učinkovito razvrščanje bremen ključno za zagotavljanje zmogljivosti, stroškovne učinkovitosti in skladnosti z operativnimi omejitvami. V magistrskem delu je predstavljeno večciljno ogrodje za razvrščanje bremen v Kubernetesu, ki združuje grafno modeliranje in predstavitev z nevronskim algoritmičnim sklepanjem (NAR). S predstavitvijo bremen in infrastrukture v obliki grafov ogrodje zajema njihove odvisnosti, zahteve po virih in omejitve, hkrati pa omogoča večplastno vidljivost. Za zasnovo in ovrednotenje ogrodja so bila analizirana obstoječa simulacijska orodja za Kubernetes, nato pa razvito prilagojeno okolje za preizkušanje različnih strategij razvrščanja na polrealističnih podatkovnih nizih. V magistrskem delu je uvedenih in naučenih več nevronskih modelov, med drugim različice s strukturiranimi numeričnimi vhodi ter besedilno pogojenimi kodirno-dekodirnimi arhitekturami, s čimer je ocenjen vpliv večmodalnega nadzora in modularnega učenja. Eksperimentalni rezultati kažejo, da modeli, osnovani na NAR, dosledno presegajo tradicionalne razvrščevalnike, temelječe na pravilih, saj bistveno zmanjšujejo število kršitev omejitev in ceno razvrščanja, obenem pa ohranjajo skalabilnost pri večjih problemih. Besedilno pogojeni modeli dodatno izboljšajo učinkovitost in število upoštevanih omejitev, čeprav z precejšnjim kompromisom glede popolnosti razvrstitve. Raziskava na splošno potrjuje učinkovitost povezovanja simbolnega grafovnega modeliranja z nevronskim sklepanjem za prilagodljivo in razširljivo razvrščanje bremen v kompleksnih računalniških okoljih. Grafovna predstavitev infrastrukture dodatno povečuje preglednost, s čimer nudi obetavno osnovo za inteligentnejšo orkestracijo oblačnih in robnih bremen.

Keywords:Kubernetes, razvrščanje bremen, nevronsko algoritmično sklepanje, grafovno modeliranje, večciljna optimizacija, robno-oblačno računalništvo

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back