Details

Implementacija odkrivanja na osnovi literature z velikimi jezikovnimi modeli : diplomsko delo
ID Nedbaylo, Andrey (Author), ID Hristovski, Dimitar (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,13 MB)
MD5: 16DA20B417A296B0C588DBFD0BFA88B6

Abstract
V tem diplomskem delu raziskujem uporabo metodologije odkrivanja na osnovi literature (angl. Literature-based Discovery ali LBD) v kombinaciji z velikimi jezikovnimi modeli (angl. Large Language Models ali VJM) za iskanje novih rešitev v javnem sektorju. Glavni cilj je bil preveriti, ali lahko generativna umetna inteligenca (angl. artificial intelligence) podpira prepoznavanje povezav med problemi, njihovimi značilnostmi in možnimi intervencijami. V ta namen sem razvil aplikacijo AEI-NSPS (angl. Application for Enhancing Innovation and Finding New Solutions for the Public Sector), ki temelji na ABC-modelu LBD in omogoča odprto (angl. Open discovery) ter zaprto odkrivanje (angl. Closed discovery), rezultate pa prikaže z interaktivnimi grafi. Empirični primeri iz medicine in javne uprave, kot sta migrena in brezposelnost med diplomanti, so pokazali, da VJM-ji uspešno generirajo smiselne hipoteze in jih povežejo z obstoječo literaturo ob podpori zunanjih baz, kot sta Scopus in PubMed. Ugotovitve kažejo, da je mogoče metodologijo LBD prenesti tudi zunaj medicine ter jo uporabiti kot podporo inovacijam v javnem sektorju.

Language:Slovenian
Keywords:odkrivanja na osnovi literature, veliki jezikovni modeli, javni sektor, ABC-model, odprto in zaprto odkrivanje, Scopus, PubMed
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FU - Faculty of Administration
FRI - Faculty of Computer and Information Science
Place of publishing:Ljubljana
Publisher:[A. Nedbaylo]
Year:2025
Number of pages:XII, 73 str.
PID:20.500.12556/RUL-175351 This link opens in a new window
UDC:001.891:004.8(497.4)(043.2)
COBISS.SI-ID:255104259 This link opens in a new window
Publication date in RUL:24.10.2025
Views:142
Downloads:35
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Implementation of literature-based discovery with large language models
Abstract:
This thesis explores the application of the Literature-Based Discovery (LBD) methodology in combination with Large Language Models (LLMs) to identify new solutions in the public sector. The main objective was to examine whether generative artificial intelligence can support the recognition of connections between problems, their characteristics, and potential interventions. For this purpose, I developed the AEI-NSPS application, based on the LBD ABC model, which enables both open and closed discovery, with results presented through interactive graphs. Empirical case studies from medicine and public administration, such as migraine and graduate unemployment, demonstrated that LLMs successfully generate meaningful hypotheses and connect them to existing literature with the support of external databases such as Scopus and PubMed. The findings indicate that the LBD methodology can be transferred beyond medicine and applied as a tool to support innovation in the public sector.

Keywords:Literature-Based Discovery, Large Language Models, public sector, ABC model, open and closed discovery, Scopus, PubMed

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back