Details

Prostori modulov in geometrijska teorija invariant : magistrsko delo
ID Mikoš, Jon (Author), ID Šivic, Klemen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (997,03 KB)
MD5: 10924171B1A0B07278ECFD8A2B6DF743

Abstract
V delu preučimo konstrukcijo prostorov modulov preko geometrijske teorije invariant. Ko klasifikacijski problem zapakiramo v funktor problema modulov, je fin prostor modulov shema, ki ta funktor predstavlja. Kadar ne obstaja, lahko včasih najdemo vsaj univerzalno aproksimacijo: grob prostor modulov. Za konstrukcijo prostora modulov moramo pogosto vzeti kvocient delovanja afine algebraične grupe. Ker prostor orbit kot lokalno okolobarjen prostor v splošnem ni shema, potrebujemo drugačen pojem kvocienta. Definiramo kategorični kvocient za delovanje afine algebraične grupe na afinih in kvaziprojektivnih shemah in pokažemo, da vedno obstaja, če sta grupa in shema dovolj lepi. V ta namen definiramo pojem stabilnosti in se znebimo nestabilnih točk. Hilbert-Mumfordov kriterij nam da numerični kriterij za računanje stabilnosti.

Language:Slovenian
Keywords:GIT kvocient, Hilbert-Mumfordov kriterij, prostor modulov, reduktivna grupa
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-175221 This link opens in a new window
UDC:512.7
COBISS.SI-ID:253994499 This link opens in a new window
Publication date in RUL:22.10.2025
Views:141
Downloads:34
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Moduli spaces and geometric invariant theory
Abstract:
We review a way of constructing moduli spaces via geometric invariant theory. Once a classification problem is packaged into a moduli functor, a fine moduli space is a scheme representing that functor. When it does not exist, we can sometimes find a universal approximation: a coarse moduli space. In order to construct a moduli space it is often the case that we need to take the quotient of an affine algebraic group action. Since the orbit space as a locally ringed space need not be a scheme, we need a different notion of a quotient. We define a categorical quotient for affine algebraic group actions on affine and quasiprojective schemes and show that it always exists, when the group and scheme are sufficiently nice. In order to do that we need to introduce a notion of stability and throw out unstable points. The Hilbert-Mumford criterion gives a numerical criterion for the computation of stability.

Keywords:GIT quotient, Hilbert-Mumford criterion, moduli space, reductive group

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back