Details

An infinite family of simple graphs underlying chiral, orientable reflexible and non-orientable rotary maps
ID Hubard, Isabel (Author), ID Potočnik, Primož (Author), ID Šparl, Primož (Author)

.pdfPDF - Presentation file, Download (894,18 KB)
MD5: AD40F249445E1601E667B0D08724A37A
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0095895625000747 This link opens in a new window

Abstract
In this paper, we provide the first known infinite family of simple graphs, each of which is the skeleton of a chiral map, a skeleton of a reflexible map on an orientable surface, as well as a skeleton of a reflexible map on a non-orientable surface. This family consists of all lexicographic products $C_n[mK_1]$, where $m \ge 3, n=sm$, with $s$ an integer not divisible by $4$. This answers a question posed by Wilson in 2002.

Language:English
Keywords:rotary maps, chiral maps, orientable reflexible maps, non-orientable rotary maps
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
PEF - Faculty of Education
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2026
Year:2026
Number of pages:Str. 384-403
Numbering:Vol. 176
PID:20.500.12556/RUL-175133 This link opens in a new window
UDC:519.17
ISSN on article:0095-8956
DOI:10.1016/j.jctb.2025.10.001 This link opens in a new window
COBISS.SI-ID:253641731 This link opens in a new window
Publication date in RUL:17.10.2025
Views:144
Downloads:64
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Journal of combinatorial theory
Shortened title:J. comb. theory, Ser. B
Publisher:Elsevier
ISSN:0095-8956
COBISS.SI-ID:25721600 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:UNAM - Universidad Nacional Autónoma de México
Funding programme:PAPIIT-DGAPA
Project number:IN-109023

Funder:CONACyT - Consejo Nacional de Ciencia y Tecnología, Mexico
Project number:A1-S-21678

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0294
Name:Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0285
Name:Algebra, diskretna matematika, verjetnostni račun in teorija iger

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4351
Name:Generiranje, analiza in katalogizacija simetričnih grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-50000
Name:Hamiltonski cikli z rotacijsko simetrijo v povezanih točkovno tranzitivnih grafih

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back