Details

Application of Machine Learning to Fundamental Analysis of Securities
ID Panteleev, Aleksandr (Author), ID Marinšek, Denis (Mentor) More about this mentor... This link opens in a new window, ID Možina, Martin (Comentor)

.pdfPDF - Presentation file, Download (2,24 MB)
MD5: 79C4A8A1D8FDA84FF75EFF3382267806

Abstract
This inquiry tests whether a classic, fundamentals-based valuation philosophy can be systematically validated in today's data-rich environment. My approach centers on estimating a security's intrinsic worth using linear and non-liner models and maintaining a buffer for error, a contrast to methods that prioritize price momentum. I constructed and historically simulated statistical models on two decades of corporate data from 2003 to 2023 to derive these rational value estimates. The process incorporated a novel signal processing technique and was rigorously designed to avoid the analytical illusion of survivorship bias. The findings from the simulation were unambiguous: portfolios of the most favorably priced assets consistently generated returns superior to a broad market proxy. Crucially, simpler, interpretable models performed on par with their complex counterparts. The work thus validates these enduring principles for a modern context, while noting the growing challenge of finding a unique edge in automated markets.

Language:English
Keywords:Benjamin Graham, value investing, machine learning, fundamental analysis, fair value, survivorship bias, financial accounting, time series smoothing
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2025
PID:20.500.12556/RUL-174951 This link opens in a new window
COBISS.SI-ID:253453315 This link opens in a new window
Publication date in RUL:10.10.2025
Views:299
Downloads:73
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Uporaba strojnega učenja pri analizi vrednostnih papirjev
Abstract:
V tej raziskavi s pomočjo sodobnih tehnik strojnega učenja preverjam, ali je mogoče načela vrednostnega investiranja Benjamina Grahama uspešno uporabiti na današnjih trgih. V nasprotju s pogostimi pristopi, ki se osredotočajo na cenovne trende, sem razvil regresijske modele za izračun ocenjene poštene vrednosti (OPV) delnic. Modeli temeljijo na Grahamovih načelih, kot sta notranja vrednost in marža varnosti. Modele sem testiral na podatkih ameriških delnic med letoma 2003 in 2023, pri čemer sem uporabil inovativno tehniko glajenja fundamentalnih podatkov in dosledno upošteval pristranskost preživelih.

Keywords:Benjamin Graham, vrednostno investiranje, strojno učenje, fundamentalna analiza, poštena vrednost, pristranskost preživelih, finančno računovodstvo, glajenje časovnih vrst

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back