Details

Napoved porabe električne energije z metodami strojnega učenja
ID Žgavec, Mark (Author), ID Faganeli Pucer, Jana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,79 MB)
MD5: 62324A4826372A50C8758E61540F1732

Abstract
Dobavitelji električne energije se za namen oskrbe odjemalcev z energijo dnevno soočajo z izzivom napovedi njihove porabe električne energije. Zaradi raznolikosti odjemalcev in vpliva zunanjih dejavnikov na porabo, nenatančne napovedi podjetjem predstavljajo dodaten strošek pri nakupu in prodaji električne energije. Cilj diplomske naloge je bil implementirati več različnih modelov strojnega učenja, ki bi omogočali izvajanje napovedi porabe za dan vnaprej. Na podlagi podatkov, ki nam jih je zagotovil slovenski dobavitelj električne energije, smo učenje modelov izvedli na obdobju iz let 2022 in 2023, uspešnost razvitih modelov pa smo primerjali na prvi polovici leta 2024. Najboljše rezultate je prinesel model LightGBM, ki je za vsak 15-minutni interval dosegel povprečno absolutno napako 49,64 kWh. Z uporabo modela smo izboljšali natančnost dnevnih napovedi. Naš model generira boljše napovedi, ki bolje predvidijo nenadne skoke ali padce v porabi, ter tudi zmanjšajo število odstopajočih napak.

Language:Slovenian
Keywords:električna energija, napovedovanje, modeli strojnega učenja
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-174860 This link opens in a new window
COBISS.SI-ID:255561731 This link opens in a new window
Publication date in RUL:10.10.2025
Views:174
Downloads:34
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Forecasting electricity consumption using machine learning methods
Abstract:
Electricity suppliers face the daily challenge of forecasting their customers' electricity consumption to supply them with energy. Due to the diversity of customers and the influence of external factors on consumption, inaccurate forecasts represent an additional cost for companies when buying and selling electricity. This thesis aims to implement several different machine learning models based on research, which will enable day-ahead consumption forecasts and improve current forecasting results. Based on data provided by a Slovenian electricity supplier, we trained the models on the period from 2022 to 2023 and compared the performance of the developed models in the first half of 2024. The LightGBM model showed the best performance, achieving an average absolute error of 49.64 kWh for each 15-minute interval. Our model improved the accuracy of daily forecasts. We obtained explainable forecasts that better capture sudden spikes or drops in consumption and reduce the number of outliers.

Keywords:electricity consumption, forecasting, machine learning models

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back