Details

Globoko spodbujevalno učenje strategij ustvarjanja trga
ID Rojec, Matej (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,23 MB)
MD5: 5A76131A867F54D49516BBCB3B0001CB

Abstract
Magistrska naloga obravnava razvoj in implementacijo okolja za globoko spodbujevalno učenje strategij ustvarjanja trga. Predstavljene so teoretične osnove markovskih procesov odločanja in tehnike globokega spodbujevalnega učenja, s poudarkom na $Q$-učenju in globokem $Q$-učenju. Delo vključuje podrobno analizo limitne knjige naročil in različnih tipov tržnih naročil, ki so ključni za razumevanje dinamike finančnih trgov. Izdelali smo simulacijsko okolje za testiranje trgovalnih strategij, kjer smo najprej implementirali agenta na poenostavljenem trgu z uporabo $Q$-učenja in globokega $Q$-učenja. Analiza rezultatov je pokazala učinkovitost različnih pristopov v odvisnosti od parametrov okolja. Razviti agent je bil nato prilagojen za trgovanje na realnih podatkih kripto trgov z uporabo tehničnih indikatorjev in naprednejših arhitektur nevronskih mrež. Eksperimentalni rezultati kažejo, da lahko strategije, naučene s pomočjo globokega spodbujevalnega učenja, uspešno konkurirajo tradicionalnim pristopom ustvarjanja trga v različnih tržnih pogojih.

Language:Slovenian
Keywords:globoko spodbujevalno učenje, strategije ustvarjanja trga, markovski proces odločanja, Bellmanov operator, nevronske mreže, limitna knjiga naročil, globoko $Q$-učenje, hiperparametri, tehnični indikatorji, simulacijsko okolje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-174739 This link opens in a new window
UDC:004.42
COBISS.SI-ID:252311043 This link opens in a new window
Publication date in RUL:09.10.2025
Views:161
Downloads:43
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deep reinforcement learning of market-making strategies
Abstract:
The master’s thesis deals with the development and implementation of an environment for deep reinforcement learning of market-making strategies. The theoretical foundations of Markov decision processes and deep reinforcement learning techniques are presented, with emphasis on $Q$-learning and deep $Q$-learning. The work includes a detailed analysis of the limit order book and various types of market orders, which are key to understanding the dynamics of financial markets. We created a simulation environment for testing trading strategies, where we first implemented an agent on a simplified market using tabular $Q$-learning and deep $Q$-learning. The analysis of results showed the effectiveness of different approaches depending on environmental parameters. The developed agent was then adapted for trading on real crypto market data using technical indicators and more advanced neural network architectures. Experimental results show that strategies learned through deep reinforcement learning can successfully compete with traditional market-making approaches in various market conditions.

Keywords:deep reinforcement learning, market-making strategies, Markov deci- sion process, Bellman operator, neural networks, limit order book, deep $Q$-learning, hyperparameters, technical indicators, simulation environment

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back