Details

Efficient Object Detection for Crop Monitoring in Precision Agriculture
ID Kerec, Jaša (Author), ID Machidon, Octavian Mihai (Mentor) More about this mentor... This link opens in a new window, ID Machidon, Alina - Luminita (Comentor)

.pdfPDF - Presentation file, Download (16,60 MB)
MD5: AD585D9BF8B34489B6FAE1EB8E42A928

Abstract
This thesis presents an automated approach to designing energy-efficient neural network architecture for wheat head detection in precision agriculture. By leveraging neural architecture search (NAS) on the YOLOv8n model, we developed optimized architecture tailored for deployment on edge devices such as the NVIDIA Jetson Nano and Raspberry Pi with OAK-D. Our best model reduced computational complexity by 37.0% GFLOPs and the number of parameters by 61.3% with negligible drop in detection accuracy (mAP@50). Furthermore, it achieved 28.1% improvement in FPS and 18.5% improvement in energy efficiency on NVIDIA Jetson Nano with ONNX runtime. Using TensorRT FP16 runtime it achieved 18.78% improvement in FPS and 39.34% improvement in energy efficiency. To asses the generalizability of the NAS approach we perform another search on plant seelding dataset yielding to 15.2% faster model (ONNX) with only negligible drop of 1.45% in accuracy.

Language:English
Keywords:neural networks, precision agriculture, object detection, neural architecture search
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-174663 This link opens in a new window
COBISS.SI-ID:255394307 This link opens in a new window
Publication date in RUL:08.10.2025
Views:182
Downloads:40
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Učinkovita detekcija objektov za spremljanje pridelka v natančnem kmetijstvu
Abstract:
V tej magistrski nalogi predstavljamo avtomatiziran pristop k zasnovi energetsko učinkovitih nevronskih arhitektur za detekcijo pšeničnih klasov v preciznem kmetijstvu. S pomočjo iskanja topologije nevronske mreže (angl. NAS) na modelu YOLOv8n smo razvili optimizirano arhitekturo, prilagojeno za izvajanje na robnih napravah, kot sta NVIDIA Jetson Nano in Raspberry Pi z OAK-D. Najboljši model je zmanjšal računsko zahtevnost za 37.0% GFLOPs in število parametrov za 61.3%, ob zanemarljivem padcu natančnosti. Poleg tega je na napravi NVIDIA Jetson Nano z okoljem ONNX runtime dosegel 28.1% večjo hitrost (FPS) in 18.5% boljšo energetsko učinkovitost na iteracijo. Z uporabo izvajalnega okolja TensorRT FP16 je dosegel za 18.78% večjo hitrost in 39.34% večjo energetsko učinkovitost. Da bi preverili generalizacijo pristopa NAS, smo izvedli še eno iskanje na podatkovni zbirki za detekcijo sadik, ki je prineslo 15.2% hitrejši model (ONNX) z zanemarljivim padcem 1.45% v natančnosti.

Keywords:nevronske mreže, precizno kmetijstvo, detekcija objektov, iskanje topologije nevronske mreže

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back