Details

From quantum chaos to ergodicity breaking in isolated many-body quantum systems
ID Świętek, Rafał Piotr (Author), ID Vidmar, Lev (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,38 MB)
MD5: 00E017041FDEA3D7B1E6ACF0950BFF92

Abstract
The ETH represents a breakthrough in many-body physics since it links thermalization of physical observables with the applicability of RMT. This framework is widely believed to hold for an overwhelming majority of physical systems, though exceptions, where conventional ETH is violated, include integrability, single-particle chaos, many-body localization, many-body scars, and Hilbert-space fragmentation. However, the mechanism of the ETH breakdown remains elusive. In this thesis, we introduce a novel scenario in many-body quantum systems, dubbed ${\it fading \ ergodicity}$ regime, which establishes a link between the conventional ETH and non-ergodic behavior. This framework predicts an exponent, $\eta$, governing eigenstate fluctuations in the matrix elements of local observables. As a consequence, slow dynamics emerge as the perturbations become vanishingly small, and the Thouless energy matches the Heisenberg scale at the critical point. We conjecture this scenario to be relevant for the description of many-body systems, where the divergent relaxation time is described by the Fermi golden rule. We provide numerical and analytical arguments for its validity in the quantum sun model and related RMT models. We continue our discussion by exploring the universality of the fading ergodicity scenario. Remarkably, we show that fading ergodicity leads to a maximally divergent peak in the fidelity susceptibility, establishing the onset of ${\it maximal \ chaos}$ at the critical point. Furthermore, we extend this framework to finite energy density, with both fading ergodicity and maximal chaos following the many-body mobility edge to high precision. Finally, we present a scaling theory of many-body ergodicity breaking, which exhibits a critical exponent $\nu = 1$ at the critical point, characterizing the universality class of fading ergodicity. However, in contrast to the well established Anderson localization transition, we argue that the one-parameter scaling theory is insufficient.

Language:English
Keywords:quantum ergodicity, random matrix theory, eigenstate thermalization, ergodicity-breaking transitions, fidelity susceptibility, maximal chaos, fermi golden rule, fading ergodicity, scaling theory, critical exponent
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-174648 This link opens in a new window
COBISS.SI-ID:252302339 This link opens in a new window
Publication date in RUL:08.10.2025
Views:185
Downloads:53
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Od kvantnega kaosa do zloma ergodičnosti v izoliranih mnogodelčnih kvantnih sistemih
Abstract:
Hipoteza termalizacije lastnih stanj (ang. eigenstate thermalization hypothesis oz. ETH) predstavlja preboj v večdelčni fiziki, saj povezuje termalizacijo fizikalnih opazljivk z uporabnostjo teorije naključnih matrik (ang. random matrix theory oz. RMT). Ta okvir naj bi veljal za večino fizikalnih sistemov, čeprav obstajajo izjeme, kjer je konvencionalna ETH kršena — mednje sodijo integrabilnost, enodelčna kaotičnost, mnogotelesna lokalizacija, večdelčna brazgotine in fragmentacija Hilbertovega prostora. Mehanizem razpada ETH pa ostaja nejasen. V tej nalogi uvajamo nov scenarij v kvantnih mnogotelesnih sistemih, imenovan režim $\it{bledenja \ ergodičnosti}$, ki vzpostavi povezavo med konvencionalno ETH in neergodičnim vedenjem. Ta okvir napoveduje eksponent $\eta$, ki določa nihanja lastnih stanj v matričnih elementih lokalnih opazljivk. Posledično se pojavi počasna dinamika, saj postanejo motnje zanemarljivo majhne, in Thoulessova energija se ujema z Heisenbergovo skalo pri kritični točki. Domnevamo, da je ta scenarij relevanten za opis večdelčnih sistemov, kjer divergenten relaksacijski čas opisuje Fermijevo zlato pravilo. Podajamo numerične in analitične argumente za njegovo veljavnost v kvantnem sončnem modelu in sorodnih modelih RMT. Razpravo nadaljujemo z raziskovanjem univerzalnosti scenarija bledenja ergodičnosti. Presenetljivo pokažemo, da bledenje ergodičnosti vodi do maksimalno divergentnega vrha v zvestostni susceptibilnosti, s čimer se vzpostavi pojav $\it{maksimalnega \ kaosa}$ pri kritični točki. Ta okvir razširimo tudi na končno gostoto energije, pri čemer bledenje ergodičnosti in maksimalni kaos sledita večdelčnemu robu mobilnosti z visoko natančnostjo. Nazadnje predstavimo teorijo skaliranja prekinitve večdelčna ergodičnosti, ki kaže kritični eksponent $\nu = 1$ pri kritični točki in s tem določa univerzalni razred bledenja ergodičnosti. Kljub temu trdimo, da enoparametrska teorija skaliranja ni zadostna.

Keywords:kvantna ergodičnost, teorija naključnih matrik, termalizacija lastnih stanj, prehodi zrušitve ergodičnosti, občutljivost na zvestobo, maksimalni kaos, Fermi-jevo zlato pravilo, bledenje ergodičnosti, teorija merjenja loma, kritični eksponent

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back