Details

Problem krepkih povezavnih geodetskih množic : doktorska disertacija
ID Vidrih, Eva (Author), ID Klavžar, Sandi (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (919,98 KB)
MD5: 39BECDF2B5A92EFE5F1356B6EF32DE72

Abstract
Problem krepkih povezavnih geodetskih množic predstavlja iskanje take najmanjše podmnožice $U$ vozlišč grafa $G$, za katero je mogoče vsakemu paru vozlišč iz $U$ prirediti tako najkrajšo pot med njima, da bodo te najkrajše poti pokrile vse povezave grafa $G$. Ker je problem krepkih povezavnih geodetskih množic NP-težek problem, skozi disertacijo podamo rešitve problema na posameznih družinah grafov. V vsaki krepki povezavni geodetski množici grafa so vsa simplicialna vozlišča, kar nam da rešitev v primeru dreves, zvezd, polnih grafov in še mnogih drugih. Prav tako so v vsaki krepki geodetski množici tudi vsa vozlišča, ki imajo dominantnega soseda. S pomočjo te lastnosti, med drugim določimo grafe, za katere je edina krepka povezavna geodetska množica kar množica vseh vozlišč. Določimo tudi grafe, za katere je krepka povezavna geodetska množica moči $n(G) − 1$. Velik del disertacije je namenjen raziskavi problema na kartezičnih produktih grafov. Za kartezične produkte $P_n \square P_m$ podamo rešitev problema, če je $m$ enak $2$, $3$ ali $4$, ter dve splošni zgornji meji za ostale primere, medtem ko za krepke produkte podamo rešitev v vseh primerih. Problem je zanimiv tudi na polnih večdelnih grafih, za katere tudi podamo rešitev. Problem na grafih Sierpińskega je soroden problemom geodetskih množic, krepkih geodetskih množic ter povezavnih geodetskih množic. V disertaciji sicer podamo zgornjo mejo velikosti najmanjše krepke povezavne geodetske množice, a domnevamo, da je ta meja točna.

Language:Slovenian
Keywords:problem krepkih povezavnih geodetskih množic, polni večdelni grafi, grafi Sierpinskega, kartezični produkt grafov
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-174411 This link opens in a new window
UDC:519.17
COBISS.SI-ID:251412483 This link opens in a new window
Publication date in RUL:02.10.2025
Views:143
Downloads:26
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Strong edge geodetic problem
Abstract:
The strong edge geodetic problem is finding the smallest subset $U$ of vertices in a graph $G$ such that for every pair of vertices in $U$, one can assign a shortest path between them in a way that the union of all such paths covers every edge of $G$. As the problem is known to be NP-hard, this dissertation focuses on solving it within specific families of graphs. We show that all simplicial vertices belong to every strong edge geodetic problem, which yields complete solutions for trees, stars, complete graphs, and several others. Furthermore, any vertex with a dominating neighbor must also be included in every such set. Using this property, we characterize graphs for which the only strong geodetic connection set is the entire vertex set and graphs for which the smallest such set has size $n(G) − 1$. A significant part of the dissertation investigates the problem on Cartesian products of graphs. We provide exact solutions for $P_n \square P_m$ when $m = 2, 3$, or $4$, along with two general upper bounds for arbitrary values of $m$. In the case of strong graph products, we present complete solutions. We also analyze complete multipartite graphs and derive exact values for their strong edge geodetic number. Finally, we study Sierpiński graphs, where the problem is closely related to geodetic, strong geodetic, and edge geodetic problem. For these graphs, we provide an upper bound on the size of the smallest strong geodetic connection set and conjecture that this bound is tight.

Keywords:strong edge geodetic problem, complete multipartite graph, Sierpinski graphs, Cartesian product of graphs

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back