Details

Sistem za nadzor biodiverzitete v morskem okolju na podlagi strojnega vida
ID Primc, Nejc (Author), ID Grm, Klemen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (45,78 MB)
MD5: AB8938E7BC385ABDBF2041C97DB9E234

Abstract
Človeštvo že tisočletja živi v sožitju z morjem, a rast populacije in potrošništvo v zadnjih stoletjih rušita ta krhki ekosistem. Izrabljanje ekosistema za prehrano, energetiko in transport je v zadnjih desetletjih močno vplivala na biotsko ra- znovrstnost ter populacijo posameznih vrst. Prvi korak za ohranjanje vrst je spremljanje njihove populacije ter ocenjevanje človeškega vpliva. Rešitev za spre- mljanje populacije, ki je že uveljavljena na kopnem, v manjši meri pa tudi pod vodo, je videonadzor. Za ta namen smo s podjetjem Anemo Robotics zasnovali dva tipa kamere ter definirali postopek za postavitev kamer na terenu, zbiranje podatkov, učenje modela računalniškega vida ter analizo posnetkov z namenom štetja populacije posameznih vrst. Baterijska in ožičena kamera omogočata dolgo- trajna opazovanja na različnih območjih ne glede na prisotno infrastrukturo. Na videoposnetkih pilotnega projekta za baterijsko kamero v Danskem pristanišču Hunsted so morski biologi označili 10 vrst živali, s čimer smo pridobili izrazito neuravnovešeno podatkovno zbirko. Na njej smo doučili po dve velikosti dveh modelov različnih arhitektur: YOLOv8n, YOLOv8m, RF-DETR Base in RF- DETR Large. Z uporabo splošnih metrik smo ocenili uspešnost modelov ter nji- hovo računsko zahtevnost, matrike zamenjav pa so pokazale, pri katerih vrstah nastopajo težave. Z modeli smo na 27 videoposnetkih prešteli največje število primerkov posameznih vrst ter število primerjali z ročno preštetimi. Ocenili smo tudi generalizacijo z napovedovanjem na nevidenih podatkih iz španskega mesta Bilbao.

Language:Slovenian
Keywords:računalniški vid, detekcija objektov, YOLO, RF-DETR, Ra- spberry Pi, mAP, MaxN
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2025
PID:20.500.12556/RUL-174171 This link opens in a new window
COBISS.SI-ID:258009347 This link opens in a new window
Publication date in RUL:29.09.2025
Views:168
Downloads:32
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A machine vision-based biodiversity control system in a maritime environment
Abstract:
Humankind has lived in harmony with the sea for thousands of years, but pop- ulation growth and consumerism in recent centuries have disrupted this fragile ecosystem. The exploitation of the ecosystem for food, energy, and transporta- tion has had a significant impact on biodiversity and the populations of individual species in recent decades. The first step in species conservation is to monitor their populations and assess human impact. Video surveillance is a solution for moni- toring populations that is already well established on land and, to a lesser extent, underwater. For this purpose, we have designed two types of cameras in collabo- ration with Anemo Robotics and defined a procedure for installing cameras in the field, collecting data, training a computer vision model, and analyzing footage to count the populations of individual species. Battery-powered and wired cameras enable long-term observations in different areas regardless of the existing infras- tructure. In the video recordings of the pilot project for the battery-powered camera in the Danish port of Hunsted, marine biologists identified 10 species of marine animals, which provided us with an extremely unbalanced dataset on which we trained two sizes of two models of different architectures: YOLOv8n, YOLOv8m, RF-DETR Base, and RF-DETR Large. We used general metrics to evaluate the performance of the models and their computational complexity, and the confusion matrices showed which species were difficult. We used the mod- els to count the maximum number of instances of each species in 27 videos and compared the number with the manually counted number. We also evaluated generalization by predicting on unseen data from Bilbao, Spain.

Keywords:computer vision, object detection, YOLO, RF-DETR, Raspberry Pi, mAP, MaxN

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back