Details

Eliminacija rezov v linearni logiki : delo diplomskega seminarja
ID Koltaj, Jona (Author), ID Bauer, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (416,54 KB)
MD5: 6290DABAF972B8CA6AC9E9CE41F80EAB

Abstract
Vpeljemo sekventni račun, njegova strukturna pravila ter logični pravili za veznik $\land$, nato pa se omejimo na linearno logiko ter veznik $\land$ razdelimo na dva. Vpeljemo še vse ostale veznike v linearni logiki ter razložimo njihov pomen, nato vpeljemo pravilo reza. Formuliramo izrek o eliminaciji reza, nato vsakemu rezu pripišemo mero, imenovano stopnja, in izrek dokažemo z dvojno indukcijo, zunanjo na številu rezov v drevesu izpeljave, notranjo na stopnji reza. Znotraj indukcije ločimo primere glede vrsto reza in rezani veznik. Definiramo glavni rez in mu znižamo stopnjo za vsak veznik posebej, pri eksponentih pa definiramo še posplošeni rez in mu nato znižamo stopnjo. Rezu (in posplošenemu rezu) znižamo stopnjo tudi, ko ni glaven, nato pa se lotimo še baze indukcije, s čimer zaključimo dokaz izreka.

Language:Slovenian
Keywords:sekventni račun, linearna logika, eliminacija rezov
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-174150 This link opens in a new window
UDC:510.6
COBISS.SI-ID:251008515 This link opens in a new window
Publication date in RUL:28.09.2025
Views:162
Downloads:39
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Cut elimination in linear logic
Abstract:
We introduce sequent calculus, its structural rules and the logical rules for the logical connective $\land$. We then limit the sequent calculus to linear logic nad split $\land$ into two connectives. We further introduce all other connectives in linear logic and explain their interpretations, then we introduce the cut rule. We formulate the cut elimination theorem then ascribe a numeric value, called degree, to each cut and prove the theorem using double induction, the outer induction on the number of cuts in the proof tree, the inner induction on the degree of the cut. Within the induction we split cases based on the type of cut and the formula being cut. We define the principal cut and lower its degree it for each connective seperately. We define the generalised cut rule for the exponentials and lower its degree. We lower the degree of the non-principal cut rule (and the non-principal generalised cut rule) and then proceed to the induction base, with which we finish the proof.

Keywords:sequent calculus, linear logic, cut elimination

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back