Details

Matematični model peke mesa : magistrsko delo
ID Zupan, Borut (Author), ID Žagar, Emil (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,25 MB)
MD5: 39F45CB56A89F43BF99B71D792CF4CA6

Abstract
Matematično modeliranje transportnih pojavov v procesih priprave hrane je ključno za razumevanje njihove dinamike. V tem delu preučujemo proces dvostranske peke mesa z razvojem matematičnega modela za sočasen prenos toplote in mase. Konstitutivne enačbe za prenos toplote in mase temeljijo na Fourierjevem prevajanju in Flory-Hugginsovi teoriji, formulirani za dvofazni transport v poroznem mediju. Preučujemo enodimenzionalni primer za preverjanje modela z uporabo ustreznih robnih pogojev. Rezultate simulacije primerjamo z eksperimentalnimi ugotovitvami, poročanimi v literaturi. Nazadnje primerjamo različne metode reševanja modela in obravnavamo občutljivost modela na različne parametre.

Language:Slovenian
Keywords:Numerično reševanje parcialnih diferencialnih enačb, numerično reševanje navadnih diferencialnih enačb, matematično modeliranje, termodinamika
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-174115 This link opens in a new window
UDC:519.6
COBISS.SI-ID:251060995 This link opens in a new window
Publication date in RUL:27.09.2025
Views:151
Downloads:54
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Mathematical model for cooking meat
Abstract:
Mathematical modeling of transport phenomena in food preparation processes is essential for understanding their dynamics. In this work, we investigate the process of double-sided meat cooking by developing a mathematical model for simultaneous heat and mass transfer. The constitutive equations for heat and mass transfer are based on Fourier’s law of conduction and the Flory-Huggins theory, formulated for two-phase transport in a porous medium. We examine a one-dimensional case to validate the model using appropriate boundary conditions. The simulation results are compared with experimental findings reported in the literature. Finally, we compare different numerical methods for solving the model and analyze the model’s sensitivity to various parameters.

Keywords:Numerical solution of partial differential equations, numerical solution of ordinary differential equations, mathematical modeling, thermodynamics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back