Details

Razvoj sistema globokega učenja za vizualni nadzor kakovosti izdelkov v velikoserijski proizvodnji
ID Kozamernik, Nejc (Author), ID Bračun, Drago (Mentor) More about this mentor... This link opens in a new window, ID Potočnik, Primož (Comentor)

.pdfPDF - Presentation file, Download (53,60 MB)
MD5: 3451CA18CDE68DEA7B2324F8137394D7

Abstract
Doktorska disertacija se osredotoča na razvoj sistema globokega učenja za vizualni nadzor kakovosti izdelkov v velikoserijski proizvodnji. Glavni cilj raziskave je bil razviti model za iskanje anomalij, ki omogoča postopno učenje, s čimer se zmanjša potreba po zamudnem označevanju slik s strani strokovnjakov. V disertaciji je bil razvit model FuseDecode AE, ki na osnovi rekonstrukcije normalnih primerov omogoča iskanje anomalij v različnih fazah učenja, od nenadzorovanega do polnadzorovanega in mešanega učenja. Model z vsako naslednjo fazo učenja omogoča zanesljivejše odkrivanje in segmentacijo anomalij. Ena ključnih prednosti predlaganega modela je skrajšanje časa, potrebnega za anotacijo podatkovnih množic za polnadzorovano in mešano učenje, saj nenadzorovano naučen model služi kot orodje za pospešitev postopka. Metode so bile validirane tako na realni industrijski bazi cevi prevlečenih s KTL-zaščito, kot na javno dostopni podatkovni bazi MVTec AD, FuseDecode AE pa dosega rezultate, ki so primerljivi z ostalimi sodobnimi metodami iskanja anomalij.

Language:Slovenian
Keywords:globoko učenje, vizualni nadzor kakovosti, iskanje anomalij, nenadzorovano učenje, polnadzorovano učenje, mešano učenje
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XXII, 115 str.
PID:20.500.12556/RUL-174028 This link opens in a new window
UDC:004.85:004.92(043.3)
COBISS.SI-ID:250858499 This link opens in a new window
Publication date in RUL:26.09.2025
Views:125
Downloads:29
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of a deep learning system for visual inspection of products quality in mass production
Abstract:
This doctoral dissertation focuses on the development of a deep learning system for visual quality inspection of products in mass production. The main goal of the research was to develop a model for anomaly detection that enables incremental learning, thereby reducing the need for time-consuming expert image annotation. The dissertation presents the development of the FuseDecode AE model, which, based on the reconstruction of normal instances, enables anomaly detection through various learning phases, from unsupervised to semi-supervised and mixed-supervision learning. With each subsequent phase of learning, the model achieves more reliable anomaly detection and segmentation. One of the key advantages of the proposed model is the reduction in the time required for annotating training datasets for semi-supervised and mixed-supervision learning, as the unsupervised learned model serves as a tool to accelerate the process. The methods were validated on both a real industrial dataset of pipes coated with KTL coating and the publicly available MVTec AD dataset, where FuseDecode AE achieves results comparable to other state-of-the-art anomaly detection methods.

Keywords:deep learning, visual quality inspection, anomaly detection, unsupervised learning, semi-supervised learning, mixed-supervision learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back