Details

Vodenje formacije avtonomnih podvodnih plovil ob omejeni komunikaciji z uporabo razširjenega Kalmanovega filtra
ID Majcen, Dominik (Author), ID Kamnik, Roman (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,19 MB)
MD5: 7D7C8C1A0DAF37FF35305CD4F2480DF9

Abstract
Vodenje formacije avtonomnih podvodnih plovil predstavlja ključni izziv zaradi omejitev podvodne akustične komunikacije. Tradicionalni pristopi zahtevajo pogosto izmenjavo informacij o stanju plovil, kar v podvodnem okolju ni izvedljivo zaradi majhne pasovne širine, dolgih časovnih zakasnitev in nizke zanesljivosti prenosa podatkov. Podvodna akustična komunikacija dosega le nekaj bajtov na sekundo, kar onemogoča zvezno sledenje stanja vodilnega plovila v formaciji. Za reševanje tega problema smo razvili sistem vodenja formacije, ki temelji na napovedovanju stanj vodilnega plovila z razširjenim Kalmanovim filtrom (EKF). Sistem omogoča ohranjanje formacije med dolgimi intervali izmenjave sporočil. Uporablja pristop vodja-sledilec, pri katerem sledilna plovila ohranjajo predpisan odmik od vodilnega plovila. EKF smo zasnovali na osnovi Fossenovega dinamičnega modela podvodnih plovil z vektorjem stanja, ki vključuje položaj, hitrost, pospeške in smer vodilnega plovila. Funkcijo prehajanja stanj smo razvili z upoštevanjem hidrodinamičnega upora in vztrajnosti plovila BlueROV2. Ključen prispevek predstavlja integracija proporcionalnega regulatorja v predikcijski korak EKF, ki omogoča napovedovanje zavojev na osnovi ukazov za spremembo smeri. Sistem vodenja smo implementirali v okolju ROS Noetic z uporabo simulacijskega okolja DAVE. Razvili smo ROS paket za simulacijo delovanja akustične komunikacije, ki vključuje realistične zakasnitve na podlagi Mackenziejeve enačbe in specifikacij akustičnega modema. Testiranje smo izvedli na trikotnem poligonu z različnimi formacijami (razpršena, linijska, V-formacija) pri različnih intervalih sporočanja stanja vodilnega plovila od 20 do 240 s in različnih okoljskih pogojih. Rezultati kažejo, da EKF uspešno napoveduje trajektorijo gibanja vodilnega plovila za vse testirane intervale. Sistem vodenja ohranja sprejemljivo točnost formacije do intervalov sporočanja 90 sekund s pogreški razdalje pod 10 m in pogreški kota odmika pod 0,5 rad. Pri daljših intervalih se pogreški povečajo zaradi akumulacije pogreška napovedi EKF, vendar osnovna geometrija formacije ostane ohranjena. Analiza kakovosti vodenja formacije pri različnih okoljskih pogojih je pokazala nelinearno odvisnost od intervalov sporočanja stanja vodilnega plovila. Omejitve sistema vodenja vključujejo enosmerni pristop izmenjave sporočil, ki ustvarja kritično točko odpovedi, in možnost razbitja formacije pri delno uspešnem sprejemu ukazov. Kljub tem omejitvam razviti sistem vodenja predstavlja pomemben prispevek k podvodni robotiki, saj omogoča vodenje formacije pri bistveno nižji frekvenci izmenjave sporočil kot tradicionalni pristopi. To vodi do manjše porabe energije in zmanjšane obremenitve komunikacijskih kanalov. Raziskava omogoča praktično uporabo algoritma za oceanografske raziskave, hidrografske meritve in podvodno obrambo. Dodatno predstavlja osnovo za nadaljnji razvoj avtonomnih podvodnih plovil z izboljšano energijsko učinkovitostjo in zmanjšano aktivnostjo akustične komunikacije.

Language:Slovenian
Keywords:avtonomna podvodna plovila, vodenje formacije, razširjeni Kalmanov filter, podvodna komunikacija, ROS
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2025
PID:20.500.12556/RUL-173961 This link opens in a new window
COBISS.SI-ID:257989891 This link opens in a new window
Publication date in RUL:25.09.2025
Views:199
Downloads:43
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Formation control of autonomous underwater vehicles under communication constraints using an extended Kalman filter
Abstract:
Formation control of autonomous underwater vehicles presents a key challenge due to the limitations of underwater acoustic communication. Traditional approaches require frequent information exchange about the vehicle status, which is not feasible in the underwater environment due to low bandwidth, long time delays, and low data transmission reliability. Underwater acoustic communication achieves only a few bytes per second, making it impossible to continuously track the status of the leader vehicle in the formation. We developed a formation control system that is based on prediction of leader states with an extended Kalman filter (EKF). This system enables formation maintenance during long message exchange intervals. It uses a leader-follower approach, where follower vehicles maintain a prescribed offset from the leader. We designed an EKF based on Fossen's dynamic model of underwater vehicles with a state vector that includes the position, velocity, accelerations, and heading of the leader vehicle. We formulated the state transition function that accounts for the hydrodynamic drag and inertia of the BlueROV2 vehicle. The key contribution is the integration of a proportional controller into the EKF prediction step, which enables the prediction of turns based on direction change commands. We implemented the control system in ROS Noetic using the DAVE simulation environment. We developed a ROS package for simulating acoustic communication, which includes realistic delays based on Mackenzie's equation and acoustic modem specifications. We conducted testing on a triangular polygon with different formations (loose, line, V-formation) at various intervals of communicating the leader vehicle status from 20 to 240 s and under various environmental conditions. Results show that the EKF successfully predicts the trajectory of the leader vehicle for all tested intervals. The formation control system maintains acceptable formation accuracy for communication intervals up to 90 seconds with distance errors below 10 m and angle errors below 0,5 rad. The errors increase at longer intervals due to the accumulation of the EKF prediction error, but the basic formation geometry remains preserved. Quality analysis of formation control under different environmental conditions revealed a nonlinear relation with the communication interval of reporting the status of the leader vehicle. The limitations of the formation control system include a unidirectional message exchange approach, which creates a critical point of failure, and the possibility of formation breakup in the event of partially successful command receiving. Despite these limitations, the developed control system represents an important contribution to underwater robotics, as it enables formation control at lower communication frequencies than traditional approaches. This leads to lower energy consumption and reduced load on communication channels. The research enables the practical use of the algorithm for oceanographic research, hydrographic measurements, and underwater defense. Additionally, it provides a foundation for further development of autonomous underwater vehicles with improved energy efficiency and reduced acoustic communication activity.

Keywords:autonomous underwater vehicles, formation control, Extended Kalman Filter, underwater communication, ROS

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back