Details

Modeliranje inkubacijskega časa za nukleacijo med rekristalizacijo z upoštevanjem kinetike rasti podzrn : magistrsko delo
ID Modrijan, Ožbej (Author), ID Kugler, Goran (Mentor) More about this mentor... This link opens in a new window, ID Bradaškja, Boštjan (Comentor)

.pdfPDF - Presentation file, Download (4,52 MB)
MD5: E8CE30A047123D12B69D2E9353D45B63

Abstract
V magistrskem delu smo nadgradili program za simuliranje statične rekristalizacije z modelom, ki eksplicitno upošteva kriterij za nukleacijo na podlagi izračuna velikosti podzrn in kritičnega radija za nukleacijo. Modela za razvoj velikosti podzrn ter kritičnega radija podzrn za nukleacijo smo sklopili z rekristalizacijskim modelom. Zatem je sledila evaluacija in testiranje razvitega modela. Celoten model temelji na teoriji povprečnega polja. Preiskovali smo kinetiko razvoja mikrostrukture na avstenitnem nerjavnem jeklu 1.4429, znanem tudi po imenu 316LN(H). Najprej smo izvedli eksperimente na simulatorju termomehanskih metalurških stanj Gleeble 3500, s pomočjo katerega smo določili krivulje tečenja ter procesne parametre za umeritev modela za statično rekristalizacijo. Po implementaciji ter umeritvi modela za nukleacijo smo izvedli nabor simulacij pri različnih procesnih parametrih. Raziskovali smo vpliv temperature, stopnje deformacije ter hitrosti deformacije na kinetiko razvoja podzrn, kritičnega radija podzrn za nukleacijo ter njihov posledični vpliv na kinetiko statične rekristalizacije. Ugotovili smo, da imata temperatura in stopnja deformacije največji vpliv na kinetiko nukleacije. S pristopom kritičnega radija podzrna za nukleacijo smo lahko določili tudi inkubacijske čase, ki so potrebni za izvršitev statične rekristalizacije pri različnih pogojih. V splošnem smo ugotovili, da je kinetika vseh procesov višja pri višjih temperaturah, stopnjah deformacije ter hitrostih deformacije. Simulacije pri različnih temperaturah so pokazale, da lahko določimo tudi temperaturno območje, v katerem omenjeni procesi ne bodo več aktivirani zaradi previsokih aktivacijskih energij. Ta podatek je zelo pomemben v industrijski praksi in nadaljnjem razvoju modelov za simuliranje razvoja mikrostrukture med termomehanskim procesiranjem.

Language:Slovenian
Keywords:nukleacija, rekristalizacija, podzrna, inkubacijski čas, modeliranje mikrostrukture, vroče preoblikovanje.
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:NTF - Faculty of Natural Sciences and Engineering
Place of publishing:Ljubljana
Publisher:O. Modrijan
Year:2025
Number of pages:XVIII, 48 f.
PID:20.500.12556/RUL-173851 This link opens in a new window
UDC:669
COBISS.SI-ID:257232131 This link opens in a new window
Publication date in RUL:24.09.2025
Views:154
Downloads:44
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modeling of incubation time of nucleation during recrystallization considering kinetics of subgrain growth : master's thesis
Abstract:
In this master’s thesis, we upgraded a program for simulating static recrystallization with a model that explicitly incorporates a nucleation criterion based on the calculated subgrain size and the critical radius for nucleation. The models for subgrain growth and for the critical subgrain radius for nucleation were coupled with the recrystallization model. This was followed by evaluation and testing of the developed model. The entire framework is based on mean-field theory. We investigated the kinetics of microstructure evolution in austenitic stainless steel 1.4429, also known as 316LN(H). First, experiments were performed using the thermomechanical testing system Gleeble 3500, through which we determined the flow curves and processing parameters required for calibrating the static recrystallization model. After implementing and calibrating the nucleation model, we conducted a set of simulations under different processing conditions. We studied the influence of temperature, strain and strain rate on the kinetics of subgrain evolution, the critical subgrain radius for nucleation, and the resulting effect on static recrystallization kinetics. We found that temperature and strain have the most significant influence on nucleation kinetics. By applying the critical subgrain radius criterion for nucleation, we were also able to determine incubation times required for static recrystallization under various conditions. In general, we observed that the kinetics of all processes increase with higher temperatures, higher strains and higher strain rates. Simulations at different temperatures further revealed that it is possible to identify the temperature range within which these processes will no longer be activated due to excessively high activation energies. This finding is particularly important in industrial practice and for the further development of models for simulating microstructure evolution during thermomechanical processing.

Keywords:nucleation, recrystallization, subgrains, incubation time, microstructure modeling, hot deformation.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back