Details

Reševanje problema maksimalnega prereza z algoritmom L-BFGS-B : magistrsko delo
ID Nedić, Mila (Author), ID Povh, Janez (Mentor) More about this mentor... This link opens in a new window, ID Hrga, Timotej (Comentor)

.pdfPDF - Presentation file, Download (527,52 KB)
MD5: 160F54139B9255FF222DCC6B5EE35FA6
URLURL - Source URL, Visit https://github.com/MilaNedic/Max-Cut This link opens in a new window

Abstract
V tem magistrskem delu predstavimo problem maksimalnega prereza na uteženih, neusmerjenih grafih. Najprej opišemo osnove semidefinitnega programiranja in teorije dualnosti, nato pa problem zapišemo kot nevezani binarni kvadratični program. Predstavimo njegovo SDP poenostavitev, izpeljemo njen dual in utemeljimo, da za primarni in dualni problem velja krepka dualnost. Kakovost rešitve, dobljene z reševanjem duala, izboljšamo z vpeljavo trikotniških neenakosti in hipermetričnih neenakosti višjega reda. Da bi razumeli, kako poenostavitev rešujemo numerično, predstavimo nekaj osnovnih in najbolj znanih iterativnih metod za reševanje optimizacijskih problemov. Posebej se osredotočimo na razred kvazi-Newtonovih metod, kamor spada tudi algoritem L-BFGS-B. Dualnemu problemu tako priredimo okrepljeno Lagrangeevo funkcijo, katere minimum poiščemo z algoritmom L-BFGS-B. Numerične rezultate predstavimo za instance grafov G1 do G23 (Helmberg in Rendl) ter be150 (Billionet in Elloumi).

Language:Slovenian
Keywords:algoritem L-BFGS-B, kvazi-Newtonove metode, problem maksimalnega prereza, semidefinitna poenostavitev, hipermetrične neenakosti, okrepljena Lagrangeeva funkcija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-173754 This link opens in a new window
UDC:519.8
COBISS.SI-ID:249490947 This link opens in a new window
Publication date in RUL:21.09.2025
Views:158
Downloads:52
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Solving the max-cut problem using the L-BFGS-B algorithm
Abstract:
In this master’s thesis, we present the max-cut problem on weighted, undirected graphs. First, we describe the basics of semidefinite programming and duality theory, and then write the problem in the form of an unconstrained binary quadratic program. We introduce its SDP relaxation, derive its dual and argue that strong duality holds for the primal and dual pair. The quality of the solution obtained by solving the dual SDP is improved by introducing triangle inequalities and hypermetric inequalities of higher order. To understand how the relaxed problem is solved numerically, we present some of the basic and most well-known iterative methods for solving optimization problems. In particular, we focus on the class of quasi-Newton methods, including the L-BFGS-B algorithm. We thus assign the augmented Lagrangian function to the dual problem and compute its minimum using the L-BFGS-B algorithm. Numerical results are presented for instances of the graphs G1 to G23 (Helmberg and Rendl) and be150 (Billionet and Elloumi).

Keywords:L-BFGS-B algorithm, quasi-Newton methods, max-cut problem, semidefinite relaxation, hypermetric inequalities, augmented Lagrangian function

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back