Details

Združevanje $p$-vrednosti pri večkratnem testiranju hipoteze : delo diplomskega seminarja
ID Planinšek Šilc, David (Author), ID Perman, Mihael (Mentor) More about this mentor... This link opens in a new window, ID Toman, Aleš (Comentor)

.pdfPDF - Presentation file, Download (514,98 KB)
MD5: FF4C4DABD1BC08A457B937CE6C55630D

Abstract
V delu diplomskega seminarja obravnavamo problem večkratnega testiranja hipoteze, kjer se pri izvedbi več statističnih testov pojavi potreba po združevanju dobljenih $p$-vrednosti v enotno odločitev, ali ničelno hipotezo zavrnemo ali ne. Predstavljene so različne metode združevanja $p$-vrednosti, med njimi Fisherjeva metoda, Brownova empirična metoda ter združevanje na osnovi posplošenih povprečij. Pri tem analiziramo teoretične lastnosti posameznih $p$-vrednosti in združene $p$-vrednosti ter empirično ocenimo moč posameznih metod s pomočjo simulacij v programskem jeziku Python. Poseben poudarek namenimo vplivu korelacije med statističnimi testi na moč preizkusa hipoteze $H_0$ na osnovi združenih $p$-vrednosti. Naveden je tudi zgled večkratnega testiranja hipoteze pri testiranju generatorjev naključnih števil, ki predstavljajo temelj igralniških produktov.

Language:Slovenian
Keywords:večkratno testiranje hipoteze, $p$-vrednost, združevanje $p$-vrednosti, funkcija združevanja, Fisherjeva metoda, Brownova empirična metoda, Bonferroni, posplošena povprečja $p$-vrednosti, funkcija moči, generator naključnih števil
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-173618 This link opens in a new window
UDC:519.2
COBISS.SI-ID:250604547 This link opens in a new window
Publication date in RUL:19.09.2025
Views:151
Downloads:36
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Combining p-values in multiple testing of a hypothesis
Abstract:
In this thesis we address the problem of multiple testing of a hypothesis, where the need arises to combine the obtained $p$-values into a single decision to reject the null hypothesis when performing several statistical tests. Various methods for combining $p$-values are presented, including Fisher's method, Brown's empirical method, and combination based on generalized means. We analyze the theoretical properties of individual $p$-values and the combined $p$-values, and empirically assess the power of individual methods using simulations in Python. Special emphasis is placed on the impact of correlation between statistical tests on the power of testing hypothesis $H_0$, based on the combined $p$-values. An example of multiple testing of a hypothesis is also provided in the context of testing random number generators, which form the basis of gaming products.

Keywords:multiple testing of a hypothesis, $p$-value, combining $p$-values, merging function, Fisher's method, Brown's empirical method, Bonferroni, generalized means of $p$-values, power function, random number generator

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back