Details

Uporaba globokega učenja za analizo zelo visoko ločljivih posnetkov v ArcGis Pro na območju Slovenije : magistrsko delo
ID Gelebeshova, Marta (Author), ID Oštir, Krištof (Mentor) More about this mentor... This link opens in a new window, ID Potočnik Buhvald, Ana (Comentor)

.pdfPDF - Presentation file, Download (12,26 MB)
MD5: 793B1F4B8F3F9AE6F2E722AF8BDDFFFF

Abstract
Zaradi napredka na področju globokega učenja za obdelavo posnetkov in prepoznavanja vzorcev je klasifikacija podatkov daljinskega zaznavanja v zadnjih letih močno napredovala. Prednaučeni modeli globokega učenja obljubljajo hitro in avtomatizirano analizo prostorskih podatkov, vendar njihova uporabnost v novih prostorskih in vsebinskih kontekstih pogosto ostaja neraziskana. V nalogi predstavljamo oceno učinkovitosti uporabe štirih prednaučenih modelov, integriranih v okolje ArcGIS Pro, na digitalnih ortofotih Slovenije iz let 2018 in 2021. Testirani so bili modeli Building Footprint Extraction – USA, Segment Anything Model (SAM), Tree Segmentation in Road Extraction – North America. Analiza je bila izvedena na dveh prostorsko in vsebinsko različnih območjih, urbanem (naselje Brdo v Ljubljani) in ruralnem (občina Ig). Rezultati kažejo, da prilagajanje ključnih parametrov lahko izboljša učinkovitost modelov, vendar pri uporabi modelov na ortofotih ostajajo omejitve, povezane s specifičnostjo lokalnega prostora. Najvišja točnost je bila dosežena pri prepoznavanju stavb, medtem ko so modeli za segmentacijo dreves in cest pogosteje generirali napačne zaznave. Rezultati kažejo, da so prednaučeni modeli primerni kot izhodišče za hitro obdelavo posnetkov zelo visoke ločljivosti, vendar je za doseganje višje natančnosti potrebno dodatno učenje in ponovni trening na lokalnih podatkih.

Language:Slovenian
Keywords:magistrska dela, globoko učenje, prepoznavanje objektov, Slovenija, ArcGIS Pro, prednaučeni modeli
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FGG - Faculty of Civil and Geodetic Engineering
Place of publishing:Ljubljana
Publisher:[M. Gelebeshova]
Year:2025
Number of pages:1 spletni vir (1 datoteka PDF (IX, 37 str., [14] str. pril.))
PID:20.500.12556/RUL-173522 This link opens in a new window
UDC:528:004.81(497.4)(043.2)
COBISS.SI-ID:249545987 This link opens in a new window
Publication date in RUL:18.09.2025
Views:201
Downloads:52
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Using deep learning for analyzing very high-resolution images in ArcGIS Pro for the area of Slovenia : master thesis
Abstract:
Thanks to advances in deep learning for image processing and pattern recognition, remote sensing data classification has progressed significantly in the last few years. Pre-trained deep learning models promise fast and automated analysis of spatial data, but their applicability in new spatial and content contexts often remains unexplored. In this study, we evaluate the performance of four pre-trained deep learning models integrated into ArcGIS Pro on Slovenia’s national digital orthophotos (DOF) from 2018 and 2021. The models tested were Building Footprint Extraction Model – USA, Segment Anything Model (SAM), Tree Segmentation Model and Road Extraction – North America Model. The analysis was conducted for two spatially and contextually different areas, one urban (the settlement Brdo in Ljubljana) and one rural (the municipality of Ig). Results demonstrate that tuning key parameters can improve model performance, but that inherent limitations persist when applying these models to local orthophotos. The highest accuracy was achieved for building footprint extraction, whereas the tree and road segmentation models exhibited higher rates of false detections. Overall, pre-trained models offer a valuable starting point for processing very high resolution (VHR) imagery, but attaining higher precision requires additional fine-tuning and re-training on locally representative data.

Keywords:master thesis, deep learning, object detection, Slovenia, pre-trained models, Building Footprint Extraction, Segment Anything, Tree Segmentation, Road Extraction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back