Details

Določanje elementov delovnih ciklusov na žičnem žerjavu z uporabo strojnega učenja
ID Šmid, Valentina (Author), ID Mihelič, Matevž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,94 MB)
MD5: 9C340D52DAE5AD60A668A66E7550848B

Abstract
V nalogi smo ugotavljali porabnost strojnega učenja za določevanje delovnih operacij in ter ugotavljali katere metode strojnega učenja dajejo najboljše rezultate. Izvedli analizo podatkov o delu žičnega žerjava z uporabo metod strojnega učenja. Sestavili smo več modelov z natančno konfiguracijo gradnikov in preverili njihovo zanesljivost pri razvrščanju operativnih stanj stroja. Poseben poudarek je bil na prepoznavanju produktivnega časa in daljših zastojev, kar omogoča oceno razpoložljivosti in izkoriščenosti naprave. Rezultati kažejo, da je algoritem naključnega gozda najuspešnejši pri razvrščanju operacij in napovedovanju ključnih kazalnikov. Dosegel je najvišjo natančnost in najnižjo srednjo kvadratno napako.. Odločitveno drevo je prav tako pokazalo visoko zanesljivost, medtem ko je nevronska mreža zaostajala z nizko klasifikacijsko natančnostjo. Pri določanju razdalje vozička smo zaznali neskladje med podatki ročnega vnosa podatkov in podatki stroja, kar zahteva nadaljnjo obravnavo. Strojno učenje se je izkazalo kot učinkovito orodje za predvidevanje delovnih operacij stroja.

Language:Slovenian
Keywords:gozdarstvo, gozdna tehnika, spravilo lesa, žični žerjavi, strojno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:BF - Biotechnical Faculty
Publisher:[V. Šmid]
Year:2025
PID:20.500.12556/RUL-173491 This link opens in a new window
UDC:630*30:630*37(043.2)=163.6
COBISS.SI-ID:249842691 This link opens in a new window
Publication date in RUL:18.09.2025
Views:165
Downloads:50
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Determining elements of work cycles on the case study of cable yarder using machine learning
Abstract:
We have researched the applicability of machine learning for identifying work operations and examined which machine learning methods yield the best results. To this end we conducted a data analysis of existing data on a cable yarder using machine learning methods. Several models were developed with precise configuration of components and evaluated their reliability in classifying the machine’s operational status. Special emphasis was placed on identifying productive time and extended downtimes, which enables assessment of the crane’s availability and utilization. The results indicate that the Random Forest algorithm is the most successful in classifying operations and predicting key indicators. It achieved the highest accuracy and the lowest mean squared error, with no significant differences between predicted and actual results. The Decision Tree also demonstrated high reliability, while the Neural Network lagged behind due to low classification accuracy. In determining the extraction dlistance, we observed discrepancies between manually obtained data and machine-reported data, which require further investigation. Machine learning proved to be an effective tool for predicting the yarder’s operational activities.

Keywords:forestry, forest technology, skidding, cable yarder, machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back