Details

Samodejno dokončanje seznama predvajanja glasbe z uporabo LightGCN
ID Sevčnikar, Lan (Author), ID Šubelj, Lovro (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (496,57 KB)
MD5: 5EE5728E187495930F5850AF928E7B06

Abstract
V diplomski nalogi je obravnavan problem samodejnega dopolnjevanja seznamov predvajanja glasbe, ki je ključen za izboljšanje uporabniške izkušnje uporabnikov storitev, kot je Spotify. Zaradi velikih količin podatkov in implicitne narave uporabniških povratnih informacij je v nalogi predstavljena uporabe arhitekture LightGCN, preprostejše različice konvolucijskih grafovskih nevronskih mrež, ki omogoča učinkovito učenje vložitev seznamov predvajanja in pesmi. Model je bil ovrednoten na javno dostopnem naboru Million Playlist Dataset, kjer je dosegel konkurenčne rezultate v primerjavi z obstoječo literaturo. Natančneje, LightGCN pri metriki priklica presega rezultate najbolj ših pristopov literature

Language:Slovenian
Keywords:grafovske nevronske mreže, priporočilni sistemi za glasbo, samodejno nadaljevanje seznama predvajanja, ReCSysChallenge2018
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-173297 This link opens in a new window
COBISS.SI-ID:253423363 This link opens in a new window
Publication date in RUL:15.09.2025
Views:133
Downloads:27
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic playlist completion using LightGCN
Abstract:
The thesis addresses the problem of automatic music playlist continuation, which is essential for enhancing the user experience in music streaming services such as Spotify. Due to the large amount of data and the implicit nature of user feedback, the thesis presents the use of the LightGCN architecture, a simplified version of graph convolutional neural networks, which enables efficient learning of embeddings of playlists and songs. The model was evaluated on the publicly available Million Playlist Dataset, where it achieved competitive results compared to the existing literature. In particular, Light- GCN outperforms the best approaches in the literature with respect to the recall metric.

Keywords:graph neural networks, music recommendation systems, automatic playlist completion, ReCSysChallenge2018

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back