Details

Relational Deep Learning over Bibliographic Data
ID Stevanović, Đorđe (Author), ID Šubelj, Lovro (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (979,47 KB)
MD5: 56F364CE9FB3F485FA61553ADAFE32EE

Abstract
Research–information systems such as SICRIS record publications, collaborations, and projects over long periods, and form relational, time–stamped data that are naturally represented as heterogeneous temporal graphs. In this thesis, a leakage–safe forecasting pipeline is developed for mentorship outcomes by casting the SICRIS schema into a heterogeneous graph and evaluating models under seed–time splits with a five–year prediction horizon. The core of the model consists of: a Heterogeneous Graph Transformer, pre–norm residual layers, Jumping Knowledge aggregation, and stochastic graph regularization (DropEdge/Dropout). We compare against a strong tabular baseline, XGBoost. Tasks are defined at researcher–seed times and cover both binary outcomes (whether a doctoral or master mentorship occurs) and count outcomes (how many such mentorships occur) within the forward window. Empirical results on the SICRIS–derived graph demonstrate that the heterogeneous, time–aware model provides consistent gains over the tabular baseline. The analysis indicates that typed attention with relative temporal encoding and Jumping Knowledge aggregation improves the use of multi–hop, multi–relation evidence, and that stochastic graph regularization helps stabilize deeper stacks.

Language:English
Keywords:Relational Deep Learning, Heterogeneous Temporal Graphs, SICRIS, RelBench, Mentorship Prediction, Explainability
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-173293 This link opens in a new window
COBISS.SI-ID:253761795 This link opens in a new window
Publication date in RUL:15.09.2025
Views:179
Downloads:34
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Globoko relacijsko učenje nad bibliografskimi podatki
Abstract:
Raziskovalno-informacijski sistemi, kot je SICRIS, dolgotrajno beležijo publikacije, sodelovanja in projekte ter s tem tvorijo relacijske, časovno označene podatke, ki jih je smiselno predstaviti kot heterogene časovne grafe. V tej diplomski nalogi je razvit napovedni model za napovedovanje števila mentorstev, pri čemer je shema SICRIS preslikana v heterogeni graf, model pa je ovrednoten z delitvami po petletnem napovednem horizontu. Jedro modela sestavljajo: heterogeni grafovski transformer, rezidualne plasti, agregacija ”Jumping Knowledge” in stohastična regularizacija grafa (navključno odstranjevanje povezav v grafu in navključno odstranjevanje aktivacij). Primerjava je izvedena z močnim tabelaričnim modelom, XGBoost. Naloge so definirane za posamezne raziskovalce v različnih časovnih točkah in zajemajo tako binarne izide (vsaj eno mentorstvo doktoranda ali magistranta) kot številske izide (število takih mentorstev) znotraj izbranega časovnega okna. Empirični rezultati na SICRIS grafu kažejo, da heterogeni, časovno občutljivi model presega tabelarično izhodišče. Analiza nakazuje, da tipizirana pozornost z relativnim časovnim kodiranjem ter agregacija Jumping Knowledge bolj učinkovito modelira večskokovne in večrelacijske podatke, stohastična regularizacija grafa pa pomaga stabilizirati globlje plasti.

Keywords:Relacijsko globoko učenje, Heterogeni časovni grafi, SICRIS, RelBench, Napovedovanje mentorstva, Razložljivost

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back