Details

Pokrivni tip in izrek o živcu : delo diplomskega seminarja
ID Dervišević, Aladin (Author), ID Pavešić, Petar (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,36 MB)
MD5: 0678C9C35218A0F741D4F466B0A8AEBE

Abstract
Topološki prostori so osrednji predmet proučevanja v topologiji, veji matematike, ki preučuje lastnosti prostorov, invariantne glede na zvezne deformacije. Eden ključnih pojmov pri razumevanju teh prostorov je pojem pokritja, ki nam omogoča, da prostor razdelimo na manjše, bolj obvladljive dele. Posebno vlogo imajo t.i. dobra pokritja, sestavljena iz odprtih množic s primernimi topološkimi lastnostmi (kontraktibilnost). Dobra pokritja so pomembna predvsem zaradi njihove povezave z izrekom o živcu, ki na eleganten način povezuje topologijo prostora s kombinatorično strukturo, kot jo opisujejo simplicialni kompleksi. Izrek o živcu pravi, da je pod ustreznimi pogoji živec (dobrega pokritja) homotopsko ekvivalenten izvirnemu prostoru. Ta rezultat je izjemno pomemben, saj omogoča prenos topoloških lastnosti prostora na njegov živec, ki je pogosto enostavnejši za analizo z uporabo kombinatoričnih metod. Dokaz tega izreka in razumevanje njegovega pomena predstavljata osrednji cilj tega diplomskega dela. V drugem delu se bomo posvetili tudi konceptu pokrivnega tipa topološkega prostora, ki meri, kako učinkovito lahko prostor pokrijemo z množicami določene oblike. Čeprav gre za dopolnilno temo, pokrivni tip ponuja zanimivo povezavo z drugimi pomembnimi invarianti, kot je minimalno število oglišč v triangulaciji prostora. Triangulacija je način predstavitve prostora s simplicialnim kompleksom, pri čemer število oglišč bistveno vpliva na topološke lastnosti prostora.

Language:Slovenian
Keywords:Homotopska ekvivalenca, pokrivni tip, živec
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-173234 This link opens in a new window
UDC:515.1
COBISS.SI-ID:249901315 This link opens in a new window
Publication date in RUL:14.09.2025
Views:182
Downloads:38
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Covering type and the nerve theorem
Abstract:
Topological spaces are the central object of study in topology, a branch of mathematics concerned with properties of spaces that are invariant under continuous deformations. One of the key tools for understanding such spaces is the notion of a cover, which allows us to decompose a space into smaller, more manageable pieces. Among these covers, particular importance is given to so-called good covers, which consist of open sets with favorable topological properties (contractibility). Good covers are especially significant due to their connection with the nerve theorem, which links the topology of a space to the combinatorics of an associated simplicial object known as the nerve or nerve complex. The nerve theorem asserts that, under certain conditions, the nerve of a good cover is homotopy equivalent to the original space. This result provides a powerful bridge between topological and combinatorial descriptions, allowing us to study topological properties through simpler, discrete models. The proof and understanding of this theorem form the main focus of this thesis. In the second part, we will examine the concept of the covering type of a topological space, which measures how efficiently a space can be covered by sets of a prescribed type. Although covering type is a secondary topic in this thesis, it remains closely related to the nerve construction and provides further insight into how the structure of a cover reflects global topological properties. In particular, we will explore the relationship between covering type and the minimal number of vertices required to triangulate a given space. Triangulations represent spaces via simplicial complexes, and the number of vertices involved plays a crucial role in determining various topological invariants.

Keywords:Homotopy equivalence, covering type, nerve

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back