Details

Neutronics of the TCV Fusion Reactor
ID Fortuna, Mark (Author), ID Snoj, Luka (Mentor) More about this mentor... This link opens in a new window, ID Blanchard, Patrick (Comentor), ID Čufar, Aljaž (Comentor)

.pdfPDF - Presentation file, Download (27,24 MB)
MD5: CB4928D82719F679E0BB606B31F39D50

Abstract
Neutron radiation presents major challenges in the development of larger fusion reactors. The TCV, a medium-sized tokamak, needed an upgrade of the radiological shield due to an upgrade of the plasma heating system and a subsequent increase in neutron yield. Before using the MCNP code to design the radiological shield, the reference model of the TCV facility needed to be improved. This was achieved by adding simple shapes to represent tokamak components and building structures. The accuracy of the model was assessed in comparison to neutron H*(10) dose measurements. When designing the radiological shield, MCNP simulations were optimized with the ADVANTG code, while neutron yield estimates were based on results of TRANSP calculations. The inclusion of homogenized representations of tokamak components enabled us to reduce the C/E values at 12 locations at the TCV facility from the range [1.6, 10] to [0.6, 4.2]. The improved model enabled us to test different configurations of the radiological shield, which resulted in a design with a predicted reduction in neutron doses by 2000 times in the control room. Additional measurements intended to measure the attenuation of polyethylene contributed to the improvement of the computational model, and measurements of the directional dose further validated the model, with C/E values in the range [0.75, 2.0] for 10 measurements at 5 areas of the TCV facility. While the use of a homogeneous "fog" that surrounds the tokamak proved successful in further improving C/E values, unless absolutely calibrated measurements of neutron yield become available, it should be replaced by more detailed models of tokamak components and cables. Also, instead of the H*(10) dose, which we have used because other neutron measurements were not available at the time, a much more appropriate quantity for model validation would be more physically direct based on reaction rates of reactions with well known cross-sections.

Language:English
Keywords:Fusion Neutronics, TCV, Fusion, Neutron Shield, MCNP, Radiological protection
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-173228 This link opens in a new window
COBISS.SI-ID:248473091 This link opens in a new window
Publication date in RUL:14.09.2025
Views:158
Downloads:31
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Nevtronika fuzijskega reaktorja TCV
Abstract:
Sevanje nevtronov je vzrok mnogih izzivov v razvoju večjih fuzijskih reaktorjev. Za reaktor TCV, ki je srednje velik tokamak, je bila potrebna nadgradnja radiološkega ščita, zaradi nadgradnje sistema gretja plazme in posledičnega povečanja pridelka nevtronov. Pred uporabo MCNP programa, ki smo ga uporabili za zasnovo radiološkega ščita je bilo potrebno nadgraditi referenčni model TCV zgradbe. To smo dosegli z dodajanjem preprostih oblik, ki predstavljajo komponente reaktorja in dele zgradbe. Natančnost modela smo ovrednotili s primerjavo z meritvami nevtronske H*(10) doze. Ob zasnovi radiološkega ščita smo MCNP izračune optimizirali z ADVANTG programom, ocene pridelka nevtronov pa so bile osnovane na rezultatih TRANSP izračunov. Prvotne C/E vrednosti, ki so bile znotraj razpona [1,6; 10] na 12 točkah na TV objektu, smo z vključitvijo homogeniziranih oblik, ki predstavljajo komponente tokamaka, znižali na razpon [0,6; 4,2]. Z izboljšanim modelom smo preizkusili različne variacije ščita in s končno različico ščita dosegli znižanje nevtronske doze v kontrolni sobi za faktor 2000. Na podlagi dodatnih meritev, ki so bile namenjene za določitev atenuacijskega koeficienta polietilena smo izboljšali računski model. Z grobimi meritvami kotne odvisnosti nevtronske doze pa smo model dodatno validirali z 10 izmerki v 5 prostorih TCV objekta, ki so imeli C/E vrednosti znotraj [0,75; 2,0]. Čeprav je uporaba homogene "meglice", ki obdaja tokamak pripomogla pri izboljšanju C/E vrednosti, bi ta morala biti zamenjana za bolj podrobne modele komponent tokamaka, dokler absolutno umerjene meritve nevtronskega pridelka niso na voljo. Poleg tega, bi bila bolj primerna količina za validacijo modela kot H*(10) doza, ki smo jo uporabljali, ker takrat druge nevtronske meritve niso bile na voljo, bolj fizikalno direktna in osnovana na reakcijskih hitrostih reakcij z dobro poznanimi preseki.

Keywords:Nevtronika v fuziji, TCV, Fuzija, Nevtronski ščit, MCNP, Radiološka zaščita

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back