Details

Vpliv prostorsko spreminjajočih materialnih lastnosti plasti za difuzijo plinov na učinkovitost delovanja gorivnih celic
ID Arlič, Jakob (Author), ID Kravos, Andraž (Mentor) More about this mentor... This link opens in a new window, ID Katrašnik, Tomaž (Comentor)

.pdfPDF - Presentation file, Download (15,05 MB)
MD5: E0E94C9C63B5AFB31DE48564FDCD2C11

Abstract
Prostorsko in časovno razločeno modeliranje nizkotemperaturnih gorivnih celic s protonsko izmenjevalno membrano je pomembno za optimizacijo učinkovitosti posameznih komponent, zagotavljanje njihove trajnosti, upravljanje z vsebnostjo in dinamiko kapljevite vode ter preprečevanje pregrevanja, kar povečuje učinkovitost in zanesljivost sistemov, v katere so implementirane. V sklopu zaključne naloge je analiziran podani 1D+1D fizikalno-kemijsko konsistenten model zmogljivosti gorivne celice. Na podlagi pridobljenega znanja je predlagan ustrezen numerični pristop in izvedena inovativna nadgradnja, ki uvaja dodatno segmentacijo plasti za difuzijo plinov v smeri prečno na kanale za dovod reaktantov in odvod produktov. Tako razviti model je sklopljen z obstoječim modelom zmogljivosti gorivne celice ter razširjen s poljubno spremenljivimi profili materialnih lastnosti omenjenih segmentacijskih plasti, s poudarkom na poroznosti, zavitosti in kotu omočenja. To izvedemo z razširitvijo prostorske diskretizacije in pripadajočega linearnega sistema, z generiranjem linearnih, eksponentnih in logaritmičnih profilov med robnima vrednostma ter z izračunom efektivnih difuzijskih koeficientov po segmentih. Prednost pristopa je večja prostorska ločljivost znotraj GDL ob ohranjeni konzervativnosti metode končnih volumnov in primerljivi računski zahtevnosti glede na izvirni 1D+1D model. Rezultati kažejo izrazitejše spremembe koncentracij plinskih reaktantov pri profilih poroznosti, medtem ko profili kota omočenja pomembneje vplivajo na porazdelitev vsebnosti kapljevite vode.

Language:Slovenian
Keywords:gorivne celice, protonsko izmenjevalna membrana, difuzija plinov, numerična analiza, materialne lastnosti, dinamika kapljevite vode
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XV, 49 f.
PID:20.500.12556/RUL-173154 This link opens in a new window
UDC:621.352.6:533.15:539.3(043.2)
COBISS.SI-ID:261801731 This link opens in a new window
Publication date in RUL:13.09.2025
Views:144
Downloads:35
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The influence of spatially varying material properties of gas diffusion layer on fuel cell performance
Abstract:
Spatially and temporally resolved modeling of low-temperature proton exchange membrane fuel cells is important for optimizing the efficiency of individual components, ensuring their durability, managing the content and dynamics of liquid water, and preventing overheating, thereby improving the efficiency and reliability of the systems in which they are implemented. In this thesis, the provided 1D+1D physico-chemically consistent fuel-cell performance model is analysed. Based on the acquired knowledge, an appropriate numerical approach is proposed and an innovative upgrade is implemented, introducing additional segmentation of the gas diffusion layer in the direction transverse to the reactant-supply and product-removal channels. The developed model is coupled with the existing performance model and extended with arbitrarily prescribed profiles of the material properties of the segmentation layers, with emphasis on porosity, tortuosity, and contact angle. This is achieved by expanding the spatial discretization and the associated linear system, generating linear, exponential, and logarithmic profiles between the boundary values, and computing segment-wise effective diffusion coefficients. The advantage of the approach is higher spatial resolution within the GDL while preserving the conservative finite-volume formulation and a computational cost comparable to the original 1D+1D model. The results show more pronounced changes in gaseous reactant concentrations for porosity profiles, whereas contact angle profiles have a stronger influence on the distribution of liquid-water content.

Keywords:fuel cells, proton exchange membrane, gas diffusion, numerical analysis, material properties, liquid water management

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back