Details

Planiranje poti z algoritmom tangentni hrošč
ID Prezelj, Rok (Author), ID Klančar, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,22 MB)
MD5: FB4752DB207EE9C04E101B008B2BF70B

Abstract
V diplomski nalogi je obravnavan problem planiranja poti mobilnega robota v okolju z ovirami. Poseben poudarek je na algoritmu tangentni hrošč, ki za razliko od globalnih metod ne potrebuje predhodnega zemljevida, temveč temelji na lokalnih zaznavah senzorjev, kot je LIDAR. Cilj naloge je bil implementirati algoritem, ga empirično preizkusiti ter primerjati z drugimi uveljavljenimi algoritmi, kot so A*, Dijkstra ter algoritmi iz družine hroščev. V okviru naloge je bil razvit programski paket v jeziku Python, ki omogoča generiranje naključnih testnih okolij, izvajanje simulacij in vizualizacijo rezultatov. Analiziran je bil vpliv različnih parametrov okolja, kot so število in velikost ovir ter doseg senzorja LIDAR, na dolžino poti in časovno zahtevnost algoritmov. Rezultati eksperimentov kažejo, da algoritem tangentni hrošč v povprečju dosega krajše poti od ostalih lokalnih algoritmov, vendar ima bistveno višjo časovno zahtevnost, ki se eksponentno povečuje s kompleksnostjo okolja. Naloga potrjuje teoretična pričakovanja in pokaže, da je tangentni hrošč primeren za uporabo v scenarijih, kjer je ključna dolžina poti, manj pa je učinkovit pri večjem številu ovir ali daljšem dosegu senzorja, kjer se njegova skalabilnost izkaže kot omejujoča.

Language:Slovenian
Keywords:planiranje poti, navigacija, tangentni hrošč, graf vidljivosti, tangentni graf, LIDAR, mobilna robotika, računska zahtevnost
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2025
PID:20.500.12556/RUL-173060 This link opens in a new window
Publication date in RUL:12.09.2025
Views:109
Downloads:18
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Path planning using the Tangent Bug algorithm
Abstract:
The work deals with the problem of planning a path of a mobile robot in an environment with obstacles. Special emphasis is placed on the tangent beetle algorithm, which, unlike global methods, does not require a prior map, but is based on local sensor readings, such as LIDAR. The aim of the thesis was to implement the algorithm, test it empirically, and compare it with other established algorithms, such as A*, Dijkstra, and algorithms from the beetle family. As part of the task, a software package was developed in Python that enables the generation of random test environments, the execution of simulations, and the visualization of results. The influence of various environmental parameters, such as the number and size of obstacles and the range of the LIDAR sensor, on the path length and time complexity of the algorithms was analyzed. The results of the experiments show that the tangent beetle algorithm achieves shorter paths on average than other local algorithms, but has a significantly higher time complexity, which increases exponentially with the complexity of the environment. The task confirms theoretical expectations and shows that the tangent beetle is suitable for use in scenarios where path optimality is key, but less effective with a larger number of obstacles or a longer sensor range, where its scalability proves to be limiting.

Keywords:path planning, navigation, tangent bug, visibility graph, tangent graph, LIDAR, mobile robotics, computational complexity

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back