Details

Lokalna permutacijska stabilnost grup : magistrsko delo
ID Puđa, Miloš (Author), ID Jezernik, Urban (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (845,82 KB)
MD5: 91ADEB16ADFFB43961BD33BA24E09DEB

Abstract
Raziskujemo približne homomorfizme v grupe simetrij. To so družine preslikav katere asimptotsko zadoščaju pogoju homomorfizma. Stabilnost je lastnost, ki pravi, da se vsak tak približni homomorfizem lahko zamenja z točnim homomorfizmom, ki mu je blizu. Vsak približni homomorfizem določi homomorfizem v univerzalno sofično grupo. Grupa je sofična, če obstaja monomorfizem v univerzalno sofično grupo. Grupa je stabilna, če je vsak sofični morfizem popoln, kar pomeni, da se filtrira do točnega homomorfizma. Če je grupa stabilna in sofična, je rezidualno končna. Posledica tega je, da grupe z lastnostjo (T) ponavadi niso stabilne. Sofična upodobitev je morfizem med grupo in univerzalno sofično grupo, ki dodatno nima fiksnih točk oz. ima ničelen sled. Obstaja konveksna struktura na prostoru sofičnih upodobitev grupe. V tem prostoru so amenabilne grupe ekstremne točke in (do amplifikacije in konjugacije natančno) imajo le eno upodobitev. Posledica tega je, da so končnogenerirane abelove grupe stabilne. Invariantne verjetnostne mere na podgrupah grupe karakterizirajo stabilnost amenabilnih grup. Natančno, amenabilna grupa je stabilna, če je vsaka taka invariantna mera kosofična oz. podprta na podgrupah končnega indeksa.

Language:Slovenian
Keywords:permutacijska stabilnost, približni homomorfizmi, lastnost (T), sofične grupe, amenabilne grupe, rezidualno končne grupe, naključne podgrupe
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-172981 This link opens in a new window
COBISS.SI-ID:248007683 This link opens in a new window
Publication date in RUL:12.09.2025
Views:167
Downloads:41
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Local permutation stability of groups
Abstract:
We study approximate homomorphisms into symmetry groups. These are families of maps satisfying the homomorphism condition asymptotically. Stability is the property that every such approximate homomorphism can be replaced by an exact homomorphism close to it. Every approximate homomorphism determines a homomorphism into the universal sofic group. A group is sofic if there exists a monomorphism to the universal sofic group. A group is stable if every sofic morphism is perfect, meaning it filters to an exact homomorphism. If a group is stable and sofic, it is residually finite. A consequence is that groups with property (T) are usually not stable. A sofic representation of a group is a morphism from the group to the universal sofic group that additionally has no fixed points, that is, it has zero trace. There exists a convex structure on the space of sofic representations. In this space, amenable groups are extreme points and (up to amplifications and conjugations) have only one representation. As a consequence, finitely generated abelian groups are stable. Invariant probability measures on the subgroups of a group characterize stability of amenable groups. Specifically, an amenable group is stable if every such invariant measure is co-sofic, i.e. supported on finite-index subgroups.

Keywords:permutation stability, approximate homomorphisms, property (T), sofic groups, amenable groups, residually finite groups, random subgroups

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back