Details

Avtomatizacija postopka izračuna četrtletnega BDP na Statističnem uradu Republike Slovenije : magistrsko delo
ID Škrinjar, Matic (Author), ID Kronegger, Luka (Mentor) More about this mentor... This link opens in a new window, ID Jaklič, Andreja (Comentor)

.pdfPDF - Presentation file, Download (1,80 MB)
MD5: 7F4892C73223A99D0798522B633655BC

Abstract
Statistike četrtletnih nacionalnih računov so ključne za oblikovanje ekonomskih politik in pogosto zahtevajo hitro objavo podatkov. Na številnih statističnih uradih velik del izračunov še vedno poteka vsaj deloma ročno, kar je zamudno in izpostavljeno tveganju napak. V magistrskem delu smo se zato posvetili avtomatizaciji postopka izračuna četrtletnega bruto domačega proizvoda (BDP) na Statističnem uradu Republike Slovenije. Cilj je bil razviti avtomatizirano rešitev, ki bi zagotovila hitrejšo, natančnejšo in preglednejšo pripravo ocen BDP. Postopek avtomatizacije je vključeval zasnovo centralne podatkovne baze v okolju Oracle SQL Developer, razvoj ETL postopkov v SQL Server Integration Services, uporabo programskega jezika R za matematične ocene ter razvoj izračunov v okolju SAS. Osredotočili smo se na proizvodni pristop izračuna BDP, pri čemer smo obravnavali izzive integracije različnih administrativnih in statističnih podatkovnih virov. Rezultati kažejo, da avtomatizacija skrajša čas obdelave, zmanjša možnost napak ter izboljša sledljivost in konsistentnost podatkov, čeprav nekateri koraki še vedno zahtevajo ročno presojo. Magistrsko delo potrjuje, da avtomatizacija pomembno prispeva k modernizaciji statističnih procesov in predstavlja temelj za nadaljnje nadgradnje v smeri večje prilagodljivosti metodologij ter hitrejše odzivnosti na spremembe v podatkovnih virih.

Language:Slovenian
Keywords:bruto domači proizvod, ETL postopki, relacijske podatkovne baze, integracija podatkovnih virov
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FDV - Faculty of Social Sciences
Place of publishing:Ljubljana
Publisher:M. Škrinjar
Year:2025
Number of pages:1 spletni vir (1 datoteka PDF (61 str.))
PID:20.500.12556/RUL-172939 This link opens in a new window
UDC:[659.2:004]:330.55(043.2)
COBISS.SI-ID:251032835 This link opens in a new window
Publication date in RUL:12.09.2025
Views:119
Downloads:19
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automation of the statistical process of calculation of the quarterly GDP at the Statistical Office of the Republic Slovenia
Abstract:
Quarterly national accounts statistics are crucial for shaping economic policies and often require rapid publication of data. At many statistical offices, a significant portion of the calculations is still performed at least partially manually, which is time-consuming and prone to errors. This master's thesis therefore focuses on the automation of the quarterly gross domestic product (GDP) calculation process at the Statistical Office of the Republic of Slovenia. The aim was to develop an automated solution that would enable faster, more accurate, and more transparent preparation of GDP estimates. The automation process included the design of a central database using Oracle SQL Developer, the development of ETL procedures in SQL Server Integration Services, the use of the R programming language for statistical estimation, and the development of calculation processes in SAS. The thesis focused on the production approach to GDP calculation, addressing the challenges of integrating various administrative and statistical data sources. The results show that automation reduces processing time, minimizes the risk of errors, and improves traceability and consistency of data, although some steps still require manual review. The thesis confirms that automation significantly contributes to the modernization of statistical processes and provides a foundation for further enhancements towards greater methodological flexibility and faster responsiveness to changes in data sources.

Keywords:gross domestic product, ETL procedures, relational databases, data integration

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back