Details

Kognitivni preskok: globoke nevronske mreže in razvoj abstraktne misli v umetni inteligenci
ID Česnik, Mark (Author), ID Krašovec, Primož (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,18 MB)
MD5: 56AEF44E6A47BFFBA2FC136D70B0AA0B

Abstract
Globoke nevronske mreže (GNM) so skupek algoritmov strojnega učenja, katerih cilj je hierarhično učenje in hkratno vključevanje več ravni abstrakcije za predstavitev znanja (Awad in Khanna, 2015). Globoko učenje, na katerem temeljijo sistemi GNM, je zelo razširjeno na področju sistemov današnje umetne inteligence, deluje pa na podlagi preslikav večplastnih odnosov med vhodnimi (neodvisnimi) spremenljivkami in odzivno spremenljivko, ki predstavlja rezultat (López Montesinos, López Montesinos in Crossa, 2022). Vprašanje pa je, če znotraj sistemov GNM obstaja možnost abstraktnega reševanja problemov, ki naj bi bilo edinstveno zgolj za človeški intelekt. Globoke nevronske mreže kažejo ogromen potencial na področju vizualnega abstrahiranja človeških IQ testov za merjenje stopnje abstrakcije. Kot taka sta v nalogi izpostavljena programa Dreamcoder in WReN, ki dokaj učinkovito rešujeta človeške slikovno-kognitivne teste, kot so Ravenove progresivne matrice in uganke ARC (korpus abstrakcije in sklepanja), ki zajemajo podatkovno bazo abstraktnih in vizualnih nalog za testiranje algoritma na nalogah širokih posplošitev. Sistemi globokih nevronskih mrež so potemtakem več kot zmožni aplicirati abstraktno misel za pridobivanje kvalitetnejših rezultatov, vendar je treba opozoriti, da kljub temu te še zdaleč niso na ravni človeške abstrakcije.

Language:Slovenian
Keywords:globoke nevronske mreže, abstraktno sklepanje, globoko učenje, abstraktna misel, umetna inteligenca
Work type:Bachelor thesis/paper
Organization:FF - Faculty of Arts
Place of publishing:Ljubljana
Publisher:[M. Česnik]
Year:2025
Number of pages:45 f.
PID:20.500.12556/RUL-172909 This link opens in a new window
Publication date in RUL:12.09.2025
Views:131
Downloads:20
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A cognitive leap: deep neural networks and the development of abstract thought in artificial intelligence
Abstract:
Deep neural networks (DNNs) are a set of machine learning algorithms whose goal is hierarchical learning and the simultaneous integration of multiple levels of abstraction for knowledge representation (Awad and Khanna, 2015). Deep learning, on which DNN systems are based, is very widespread in the field of today’s artificial intelligence systems and operates on the basis of mapping multi–layered relationships between input (independent) variables and the response variable that represents the result (López Montesinos, López Montesinos and Crossa, 2022). The question is whether DNN systems also contain the ability to solve abstract problems, which is supposed to be exclusive to human intelligence. Deep neural networks show enormous potential in the field of visual abstraction of human IQ tests for measuring the level of abstraction. As such, the paper highlights the Dreamcoder and WReN programs, which quite effectively solve human image-cognitive tests such as Raven progressive matrices and ARC (abstract and reasoning corpus) puzzles, which cover a database of abstract and visual tasks for testing the algorithm on a wide range of tasks. DNN systems are therefore more than capable of applying abstract thinking to obtain better results, but it should be noted that they are still far from reaching the level of human abstraction.

Keywords:deep neural networks, abstract reasoning, deep learning, abstract thought, artificial intelligence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back