Details

Klasifikacija zvočnih dogodkov z uporabo njihove smeri prihoda in časovne analize ničel signala
ID Curk, Tim (Author), ID Prezelj, Jurij (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,20 MB)
MD5: 38D28692AD8ECCEDCD9BFE7D22D32392

Abstract
V sodobnih industrijskih procesih postaja učinkovito spremljanje in analiza zvočnih pojavov ključnega pomena za zagotavljanje sledljivosti in optimizacijo delovanja. Tradicionalne metode pogosto zahtevajo kompleksne merilne sisteme ali drago opremo, kot so akustične kamere, zato se pojavlja potreba po razvoju enostavnejših in energetsko učinkovitih pristopov. V okviru te raziskave je bila razvita metodologija nenadzorovane klasifikacije zvočnih podatkov z uporabo algoritma k-means, ki omogoča ločevanje in razvrščanje akustičnih dogodkov na podlagi izbranih cenilk. Posebna pozornost je bila namenjena spektralnim, energijskim, časovnim in cepstralnim značilnostim, pri čemer se je kot ključna izkazala tudi relativno nekonvencionalna cenilka, pomembna za nadaljnjo implementacijo v FPGA vezja. Rezultati analize so pokazali visoko stopnjo skladnosti med razvrstitvijo in dejanskimi posnetki, kar potrjuje zanesljivost metode. Predlagani pristop tako odpira možnosti za razvoj cenovno dostopnih sistemov za spremljanje zvočnih procesov v realnem času, kar lahko pomembno prispeva k zmanjšanju stroškov proizvodnje ter hkrati omogoči zaznavanje odstopanj in izboljšano nadzorovanje industrijskih okolij.

Language:Slovenian
Keywords:k-means, ničelno prečkanje, klasifikacija zvokov, statistična razdalja časov med ničlami, akustika, redukcija dimenzionalnosti
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XVIII, 69 str.
PID:20.500.12556/RUL-172721 This link opens in a new window
UDC:681.88:534.87:658.5(043.2)
COBISS.SI-ID:249838339 This link opens in a new window
Publication date in RUL:11.09.2025
Views:144
Downloads:22
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Unsupervised classification of sound events using DOA and signal zero-crossing analysis
Abstract:
In modern industrial processes, efficient monitoring and analysis of acoustic phenomena are becoming crucial for ensuring traceability and optimizing performance. Traditional methods often rely on complex measurement systems or costly equipment, such as acoustic cameras, which creates the need for simpler and more energy-efficient approaches. In this study, a methodology for unsupervised classification of acoustic data using the k-means algorithm was developed, enabling the separation and categorization of acoustic events based on selected features. Special emphasis was placed on spectral, energetic, temporal, and cepstral characteristics, with one relatively unconventional feature emerging as particularly important for further implementation in FPGA circuits. The results demonstrated a high degree of consistency between the clustering outcomes and the actual recordings, confirming the reliability of the proposed method. This approach thus opens new opportunities for the development of cost-effective systems for real-time acoustic monitoring, which can significantly contribute to reducing production costs while enhancing anomaly detection and improving industrial process control.

Keywords:k-means, zero-crossing, sound classification, statistical distance of zero-crossing intervals, dimensionality reduction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back