Details

Primerjava klasičnega PID krmilnika in krmiljenja na osnovi spodbujevalnega učenja na primeru magnetne levitacije
ID Hlastan, Jaka (Author), ID Podržaj, Primož (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,75 MB)
MD5: F02F7E6ABE944EB62692243EEB77056E

Abstract
Magnetna levitacija je s stališča krmiljenja zanimiv pojav, saj gre za nelinearen sistem. S pomočjo računalniških simulacij primerjamo uspešnost krmiljenja takšnega sistema s pomočjo klasičnega PID krmilnika in krmilnika na osnovi spodbujevalnega učenja. Medtem ko slednji lahko pod pravimi pogoji privede do marginalno boljših rezultatov, sploh kar se tiče trajanja prehodnega pojava in robustnosti, pristop s PID krmilnikom ponuja stabilen in natančen rezultat, dosežen na precej bolj enostaven način.

Language:Slovenian
Keywords:magnetna levitacija, strojno učenje, PID krmilniki, spodbujevalno učenje, simulacije, programiranje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XX, 75 str.
PID:20.500.12556/RUL-172720 This link opens in a new window
UDC:681.527.7:004.4:004.85(043.2)
COBISS.SI-ID:249487875 This link opens in a new window
Publication date in RUL:11.09.2025
Views:173
Downloads:50
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A comparative study of classic PID control and reinforcement learning based control for magnetic levitation systems
Abstract:
The phenomenon of magnetic levitation represents an interesting challenge from a control perspective due to its nonlinearity. Through computer simulated control environments we compared the results of using classic PID modeled control and a control agent taught through reinforcement learning. While the latter performed marginally better in terms of transient state duration and robustness, PID control still offered a stable and accurate result while proving much simpler to achieve.

Keywords:magnetic levitation, machine learning, PID controllers, reinforcement learning, simulations, programming

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back