Details

Actionable Gene Expression Cell Profiling with Foundation Models
ID Trnovec, Lena (Author), ID Zupan, Blaž (Mentor) More about this mentor... This link opens in a new window, ID Shaulsky, Gad (Comentor)

.pdfPDF - Presentation file, Download (3,03 MB)
MD5: 8E1BF95E3E72E7658FD643BE8380542A

Abstract
Modern techniques for analyzing cellular data enable a deeper understanding of diseases and the development of more effective therapies. Recently, foundation models — advanced neural networks trained on vast amounts of data — have been developed, representing an important advancement in the analysis of cellular processes. However, since these models have mostly been trained on human cells, an open question remains: can their knowledge be successfully transferred to evolutionarily distant organisms? In this master’s thesis, we address this very question. As a test case, we chose the social amoeba Dictyostelium discoideum, which diverged from humans more than a billion years ago but has a well-studied biology. We systematically compared different approaches to cellular data analysis, ranging from traditional methods to the latest foundation models, including Geneformer, scGPT, and Universal Cell Embedding (UCE). Our results show that foundation models can effectively analyze even evolutionarily distant organisms, with UCE emerging as the most successful approach. This model is based on analyzing protein sequences rather than gene names, which allows it to recognize functional similarities regardless of evolutionary distance. UCE successfully identified different cell types, key signaling pathways, and developmental transitions in the amoeba, suggesting the existence of universal principles of cellular functioning. Our study thus paves the way for applying foundation models to the study of a wide range of organisms without the need for additional model training.

Language:English
Keywords:foundation models, cell embeddings, single-cell analysis, transfer learning
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-172663 This link opens in a new window
COBISS.SI-ID:249385475 This link opens in a new window
Publication date in RUL:10.09.2025
Views:180
Downloads:42
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Uporaben vektorski opis celice s temeljnimi modeli
Abstract:
Moderne tehnike analize celičnih podatkov omogočajo globlje razumevanje bolezni in razvoj učinkovitejših terapij. V zadnjem času so bili razviti temeljni modeli — napredne nevronske mreže, ki se učijo na ogromnih količinah podatkov — in predstavljajo pomemben napredek pri analizi celičnih procesov. Ker pa so bili ti modeli večinoma učeni na človeških celicah, ostaja odprto vprašanje, ali je njihovo znanje mogoče uspešno prenesti tudi na evolucijsko oddaljene organizme. V magistrskem delu smo se posvetili prav temu vprašanju. Kot testni primer smo izbrali socialno amebo Dictyostelium discoideum, ki je od človeka evolucijsko oddaljena več kot milijardo let, hkrati pa je biološko dobro raziskana. Sistematično smo primerjali različne pristope k analizi celičnih podatkov: od tradicionalnih metod (PCA) do najnovejših temeljnih modelov, vključno z Geneformer, scGPT in Universal Cell Embedding (UCE). Rezultati kažejo, da lahko temeljni modeli učinkovito analizirajo tudi evolucijsko oddaljene organizme, pri čemer se je kot najuspešnejši izkazal pristop UCE. Ta temelji na analizi proteinskih sekvenc namesto imen genov, kar mu omogoča prepoznavanje funkcionalnih podobnosti ne glede na evolucijsko razdaljo. UCE je uspešno prepoznal različne tipe celic, ključne signalne poti in razvojne prehode v amebi, kar dokazuje, da obstajajo univerzalna načela celičnega delovanja. Naša raziskava tako odpira pot za uporabo temeljnih modelov pri preučevanju širokega spektra organizmov brez potrebe po dodatnem učenju modelov.

Keywords:temeljni modeli, vektorski opis celice, analiza celičnih podatkov, prenosno učenje

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back