Details

Nadomeščanje manjkajočih meritev temperature z nevronskimi mrežami na grafih
ID Stojanovič, Jan Jure (Author), ID Faganeli Pucer, Jana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (11,21 MB)
MD5: 8FD7B6B267B6179263958EC1688FCCCD

Abstract
Vremenski podatki pogosto vsebujejo manjkajoče meritve zaradi okvar senzorjev, komunikacijskih napak ali vzdrževalnih posegov, kar oteži njihovo uporabo pri napovedovanju in spremljanju stanja. Namen naloge je nadomestiti manjkajoče meritve temperature z izkoriščanjem prostorsko-časovnih odvisnosti med meteorolo škimi postajami. Kot cilj naše diplomske naloge smo si zadali izdelavo modela strojnega učenja na podlagi grafnih nevronskih mrež za nadomeščanje manjkajočih meritev temperature v podatkovnih množicah. Podatke smo strukturirali v prostorsko-časovni graf in razvili dva glavna pristopa. Model GNN-GRU združuje grafno pozornost in rekurenčne enote GRU za napoved temperature v naslednjem časovnem koraku in ga uporabimo, kadar so na voljo zgodovinske meritve ciljne postaje. Model GAT-Spatial pa z več zaporednimi GAT-plastmi nadomesti trenutne vrednosti temperature brez zgodovine na cilju. Najboljše rezultate smo dosegli z GNN-GRU modelom in povprečno absolutno napako 0, 371 °C, z GAT-Spatial pa s povprečno absolutno napako 1, 220 °C.

Language:Slovenian
Keywords:Nadomeščanje manjkajočih meritev, meritve vremenskih postaj, grafne nevronske mreže
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-172650 This link opens in a new window
COBISS.SI-ID:249734659 This link opens in a new window
Publication date in RUL:10.09.2025
Views:178
Downloads:39
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Temperature data imputation using graph neural networks
Abstract:
Weather data often contains missing measurements due to sensor failures, communication errors, or maintenance interventions, which complicates forecasting and monitoring. The purpose of this thesis is to replace missing temperature measurements by exploiting the spatial-temporal dependencies between meteorological stations. The goal of our thesis is to develop a machine learning model using graph neural networks to impute temperature measurements in incomplete data sets. We structured the data into a spatio-temporal graph and developed two main approaches. The GNN-GRU model combines graph attention and recurrent GRU units to predict temperature for the next time step and is used when historical measurements at the target station are available. Meanwhile the GAT-Spatial model uses multiple consecutive GAT layers to replace current temperature values without historical data at the target station are not used. Our best results were achieved with the GNN-GRU model with an average absolute error of 0.371 °C, while the GAT-Spatial model achieved an average absolute error of 1.220 °C.

Keywords:Temperature imputation, weather station measurements, graph neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back