Details

Poštena stabilna prirejanja
ID Kovačič, Jaka (Author), ID Fijavž, Gašper (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (413,02 KB)
MD5: C613872E27C07943DEB8471070A99F3B

Abstract
V tej diplomski nalogi si bomo pogledali iskanje stabilnih prirejanj in iskanje poštenih stabilnih prirejanj. V nalogi formuliramo sam problem in opišemo algoritem Gale-Shapley za iskanje stabilnega prirejanja. Pogledali si bomo ekstremni prirejanji, dobljeni z algoritmom, in pokazali njuno optimalnost za vsako stran ter urejenost ostalih prirejanj med njima. Z rotacijami na seznamih preferenc bomo poiskali druga stabilna prirejanja ter si pogledali kako jih našteti. Na koncu se bomo posvetili iskanju stabilnih prirejanj, ki so poštena. Omenili bomo štiri različne mere poštenosti: egalitarno, uravnoteženo, spoloma enako mero ter mero z najmanjšim obžalovanjem. Med seboj bomo primerjali te mere kot tudi njihovo poštenost. Za vsako mero bomo povedali kako poiskati takšno prirejanje z uporabo postopkov, opisanih v prejšnjem poglavju, ki določajo različne časovne kompleksnosti iskanja vsakega od teh prirejanj.

Language:Slovenian
Keywords:stabilno prirejanje, seznam preferenc, algoritem Gale-Shapley, rotacije, egalitarno stabilno prirejanje, stabilno prirejanje z najmanjšim obžalovanjem, spoloma enako stabilno prirejanje, uravnoteženo stabilno prirejanje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-172625 This link opens in a new window
COBISS.SI-ID:249448451 This link opens in a new window
Publication date in RUL:10.09.2025
Views:132
Downloads:15
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Fair stable matchings
Abstract:
In this thesis, we examine the search for stable matchings and the search for fair stable matchings. We formulate the problem itself and describe the Gale–Shapley algorithm for finding a stable matching. We look at the extreme matchings obtained by the algorithm and demonstrate their optimality for each side, as well as the ordering of the other matchings between them. Using rotations on the preference lists, we explore how to find other stable matchings and how to enumerate them. Finally, we focus on finding stable matchings that are fair. We present four different measures of fairness, the egalitarian measure, the balanced measure, the gender-equal measure, and the minimum regret measure. We compare these measures to one another and evaluate their fairness. For each measure, we explain how to find such a matching using the procedures described in the previous chapter, which define the different time complexities for finding each matching.

Keywords:stable matching, preference list, Gale–Shapley algorithm, rotations, egalitarian stable matching, minimum regret stable matching, sex-equal stable matching, balanced stable matching

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back