Details

Design and evaluation of a passive compliance control method of an offshore wind turbine blade grinding robot
ID Liu, Xinrong (Author), ID Li, Hao (Author), ID Fang, Yu (Author), ID Fan, Diqing (Author)

.pdfPDF - Presentation file, Download (1,44 MB)
MD5: 3A1017F42256FBF6F03FB5B2B2D2CE99
URLURL - Source URL, Visit https://www.sv-jme.eu/sl/article/research-on-passive-compliance-control-method-of-offshore-wind-turbine-blade-grinding-robot/ This link opens in a new window

Abstract
Robots that repair offshore wind turbine blades are susceptible to interference from different factors such as external wind, which can lead to damage to the blades by the robot during the grinding process. Therefore, the robot needs to keep the grinding contact force constant in the complex operating environment. In this study, a constant force control device that is based on a pneumatic system is designed to address this problem, and a controller that is based on an improved Active Disturbance Rejection Control (ADRC) algorithm was proposed to control this device. Based on the analysis of the mechanism of the constant force control device and according to the relative order of the system, a second-order ADRC is designed. The controller utilizes a tracking differentiator (TD) to filter the input signal, an extended state observer (ESO) to estimate the total perturbation in the system, and a nonlinear state error feedback control law (NLSEF) for compensation. In order to solve the problems of electric proportional valve dead-zone characteristics, unknown interference during high altitude operation, tilt angle changes during grinding, dead-zone compensation, and gravity compensation algorithms were incorporated into the controller. Finally, the experimental platform is built to carry out experiments under various working conditions. The experimental results show that the controller improves the system regulation time by 59%, with an overshoot close to zero, when compared with the traditional proportional-integral-derivative (PID) algorithm. Also, both the absolute value of the maximum error and the mean square value of the error have been reduced to a large extent. As a result, the controller has a better force control accuracy and dynamic tracking performance, strong interference rejection capability and adaptability, and provides a theoretical basis for practical engineering applications.

Language:English
Keywords:improved active disturbance rejection control, gravity compensation, dead-zone compensation, offshore wind turbine blade, pneumatic loading system
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FS - Faculty of Mechanical Engineering
Publication status:Published
Publication version:Version of Record
Year:2025
Number of pages:8 str.
Numbering:Vol. 71, no. 3/4
PID:20.500.12556/RUL-172534 This link opens in a new window
UDC:621
ISSN on article:2536-3948
COBISS.SI-ID:247064067 This link opens in a new window
Publication date in RUL:08.09.2025
Views:140
Downloads:21
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Strojniški vestnik
Shortened title:Stroj. vestn.
Publisher:Fakulteta za strojništvo
ISSN:2536-3948
COBISS.SI-ID:294943232 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Abstract:
Roboti, ki popravljajo lopatice vetrnih turbin na morju, so dovzetni za motnje različnih dejavnikov, kot je zunanji veter, zaradi česar lahko robot med postopkom brušenja poškoduje lopatice. Zato mora robot v neugodnem delovnem okolju ohranjati konstantno kontaktno silo brušenja. V tej študiji je bila za reševanje tega problema zasnovana naprava za nadzor konstantne sile, ki temelji na pnevmatskem sistemu. Za nadzor te naprave pa je bil predlagan krmilnik, ki temelji na izboljšanem algoritmu ADRC (Active Disturbance Rejection Control). Na podlagi analize mehanizma naprave za nadzor konstantne sile in glede na relativni red sistema je bil zasnovan ADRC algoritem drugega reda. Krmilnik uporablja sledilni diferencial (TD) za filtriranje vhodnega signala, razširjeni opazovalnik stanja (ESO) za oceno celotne motnje v sistemu in nelinearni zakon povratne kontrole napake stanja (NLSEF) za kompenzacijo. Da bi rešili težave z značilnostmi mrtve cone električnega proporcionalnega ventila, neznanimi motnjami med delovanjem na veliki nadmorski višini, spremembami kota nagiba med brušenjem, so bili v krmilnik vključeni algoritmi za kompenzacijo mrtve cone in kompenzacijo težnosti. Na koncu je bila zgrajena eksperimentalna platforma za izvajanje poskusov v različnih delovnih pogojih. Rezultati poskusov kažejo, da krmilnik v primerjavi s tradicionalnim proporcionalno-integralno-derivativnim (PID) algoritmom izboljša čas regulacije sistema za 59 %, pri čemer je prekoračitev blizu nič. V veliki meri sta se zmanjšali tudi absolutna vrednost največje napake in srednja kvadratna vrednost napake. Posledično ima krmilnik boljšo natančnost krmiljenja sile in zmogljivost dinamičnega sledenja, močno sposobnost zavračanja motenj in prilagodljivost ter zagotavlja teoretično podlago za praktično inženirsko uporabo.

Keywords:izboljšani aktivni nadzor zavrnitve motenj, gravitacijska kompenzacija, kompenzacija mrtvega območja, lopatica vetrne turbine na morju, pnevmatski obremenilni sistem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back