Details

Primerjalna analiza metode PSO in genetskih algoritmov pri optimizaciji koordiniranega obratovanja prečnih transformatorjev
ID Teneva, Nadica (Author), ID Pantoš, Miloš (Mentor) More about this mentor... This link opens in a new window, ID Bevc, Jure (Comentor)

.pdfPDF - Presentation file, Download (2,07 MB)
MD5: 00E74226732F6E981A872F3ACEDF31AF

Abstract
Diplomska naloga obravnava primerjalno analizo dveh optimizacijskih metod — optimizacije rojev delcev (PSO) in genetskega algoritma (GA) — za koordinirano obratovanje prečnih transformatorjev (PST). Fazni kot PST je z obema metodama določen z namenom zmanjšanja izgub delovne moči in razbremenitve izbranih prenosnih poti v IEEE 39-vozliščnem preizkusnem elektroenergetskem sistemu. V začetni fazi smo PST vstavili na tri izbrane prenosne linije katerim smo želeli znižati obremenitev. Analiza je bila izvedena ločeno za vsak posamezni primer, z nadaljnjim poudarkom na primerjavi PSO in GA glede: doseganja ciljnih pretokov moči in vrednosti optimizacijske funkcije, čas izračuna, konsistentnost rezultatov, ter občutljivosti na parametre algoritmov. Za izvajanje simulacij in analiz sta bili uporabljeni programski okolji MATLAB in Python. Rezultati optimizacije so prikazani na grafičen način in vključujejo podrobno analizo ter diskusijo o vplivu spreminjanja faznih kotov na pretoke moči, sistemske izgube in obremenitve posameznih elementov omrežja.

Language:Slovenian
Keywords:Prečni transformator, genetski algoritem, PSO, energetsko omrezje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Year:2025
PID:20.500.12556/RUL-172528 This link opens in a new window
COBISS.SI-ID:249348867 This link opens in a new window
Publication date in RUL:08.09.2025
Views:145
Downloads:15
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparative analysis of the PSO method and Genetic algorithms in the optimization of coordinated operation of phase-shifting transformers
Abstract:
The thesis addresses a comparative analysis of two optimization methods — Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA) — for the coordinated operation of Phase-Shifting Transformers (PST). The phase angle of the PST is determined by both methods with the aim of reducing active power losses and relieving selected transmission lines in the IEEE 39-bus test power system. In the initial stage, PSTs were inserted into three selected transmission lines whose loading we aimed to reduce. The analysis was carried out separately for each case, with further emphasis on comparing PSO and GA in terms of achieving target power flows and objective function values, computation time, result consistency, and sensitivity to algorithm parameters. For performing simulations and analyses, the MATLAB and Python environments were used. The optimization results are presented graphically and include a detailed analysis and discussion of the impact of phase angle adjustments on power flows, system losses, and the loading of individual network elements.

Keywords:Phase-shift transformer, genetic algorithms, PSO, power system

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back