Details

Bézierjeve diagonale : magistrsko delo
ID Gradišek, Domen (Author), ID Grošelj, Jan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,03 MB)
MD5: 3DB072E86E6B13392FB41DA0D69CCE79

Abstract
V delu so predstavljene Bézierjeve krivulje in ploskve - definicije in osnovne lastnosti skupaj s primeri. Podani so natančni pogoji na kontrolne točke, pri katerih je zlepek dveh Bézierjevih krivulj (ploskev) zvezen oziroma geometrijsko odvedljiv. Osrednji cilj naloge je študij diagonal na Bézierjevih ploskvah. Najprej se pokaže, da so diagonale same tudi Bézierjeve krivulje - določiti se dà njihovo stopnjo in kontrolne točke. V nadaljevanju je izpeljano, kdaj sta dve poljubni krivulji diagonali Bézierjeve ploskve. Na koncu je določen še razred ploskev z enakima diagonalama in kako se ta razred spreminja, če pogoju na diagonale dodamo še kakšen pogoj na rob ploskve.

Language:Slovenian
Keywords:Bézierjeva krivulja, ploskev in diagonala, kontrolne točke
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-172125 This link opens in a new window
UDC:519.6
COBISS.SI-ID:247884547 This link opens in a new window
Publication date in RUL:06.09.2025
Views:186
Downloads:61
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Bézier diagonals
Abstract:
The thesis presents Bézier curves and surfaces - their definitions, fundamental properties, and examples. It also provides precise conditions on the control points under which the join of two Bézier curves (or surfaces) is continuous or geometrically diferentiable. The central aim of the thesis is the study of diagonals on Bézier surfaces. It is first shown that the diagonals themselves are Bézier curves and how to determine their degree and control points. The thesis then derives the conditions under which two arbitrary curves can be diagonals of a Bézier surface. Finally, the class of surfaces with identical diagonals is characterized, and the way this class changes when additional boundary constraints are imposed.

Keywords:Bézier curve, surface and diagonal, control points

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back