Details

Merljivi kardinali : delo diplomskega seminarja
ID Pantner, Jan (Author), ID Bauer, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (386,29 KB)
MD5: 2FF695623F89CB8AC301F02B0AA02513

Abstract
Delo poveže obstoj mere iz analize in verjetnosti s filtri in kardinalnimi števili iz teorije množic. Najprej obravnava lastnosti dobrih urejenosti, ordinalov in kardinalov ter vpelje pojem transfinitne indukcije in rekurzije. Nato dokaže ekvivalenco med obstojem mere in obstojem ultrafiltra, kar privede do vpeljave merljivih kardinalov. Na koncu dokaže nedosegljivost merljivih kardinalov in jih poveže z drevesi in particijami iz kombinatorike.

Language:Slovenian
Keywords:merljiv kardinal, mera, ordinal, dobra urejenost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-172003 This link opens in a new window
UDC:510.6
COBISS.SI-ID:247876099 This link opens in a new window
Publication date in RUL:05.09.2025
Views:143
Downloads:14
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Measurable cardinals
Abstract:
The work connects the existence of a measure from analysis and probability with filters and cardinal numbers from set theory. It first introduces the properties of well-orderings, ordinals, and cardinals, and introduces the concept of transfinite induction and recursion. It then proves the equivalence between the existence of a measure and the existence of an ultrafilter which leads to the introduction of measurable cardinals. Finally, it proves the inaccessibility of measurable cardinals and connects them to trees and partitions from combinatorics.

Keywords:measurable cardinal, measure, ordinal, well-ordering

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back