Details

Caseyjev izrek : delo diplomskega seminarja
ID Prošek, Manca (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,33 MB)
MD5: 53568042D1FE8A00413B419FEC891FDB

Abstract
V diplomski nalogi bomo formulirali in dokazali Caseyjev izrek o tangentnosti štirih krožnic na peto ter nekatere njegove posledice. Za lažje razumevanje bomo začeli s Ptolemajevim izrekom, ki govori o tetivnem štirikotniku in je poseben primer Caseyjevega. V nadaljevanju bomo definirali tangente med krožnicami in njihove lastnosti, nato pa si bomo pogledali Caseyjev izrek. Pred dokazom inverza izreka, bomo definirali tudi, kaj je inverzija in kako slika objekte v ravnini.

Language:Slovenian
Keywords:Caseyjev izrek, tangentne krožnice, inverzija, potenca točke na krožnico, podobnost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-171997 This link opens in a new window
UDC:514
COBISS.SI-ID:247862787 This link opens in a new window
Publication date in RUL:05.09.2025
Views:142
Downloads:16
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Casey’s theorem
Abstract:
In this thesis, we will formulate and prove Casey’s theorem on the tangency of four circles to a fifth, as well as some of its consequences. For easier understanding, we will start with Ptolemy’s theorem, which deals with the chord quadrilateral and is a special case of Casey’s. We will define the tangents between circles and their properties, and then we will look at Casey’s theorem. Before proving the inverse of the theorem, we will also define what an inversion is and how it maps objects in a plane. We will conclude the thesis with a demonstration of some of the consequences.

Keywords:Casey’s theorem, tangent circles, inversion, the power of a point, similarity

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back