Details

Razvoj nesamozapornega planetnega gonila
ID Griparič, Simon (Author), ID Oman, Simon (Mentor) More about this mentor... This link opens in a new window, ID Nagode, Marko (Comentor)

.pdfPDF - Presentation file, Download (4,93 MB)
MD5: C1763BFB9CFD3A85FF982D854D4251E4

Abstract
V zaključni nalogi je predstavljena pot razvoja nesamozapornega planetnega gonila Wolfrom topologije. Izhodišče je analitičen model gonila, ki združuje geometrijo, kinematiko, sile, izgube in preverjanje nosilnosti po standardu ISO 6336 za zlom zoba in jamičenje. Sistem je večkriterijsko optimiziran s pomočjo genetskega algoritma. Optimizacija je izvedena z genetskim algoritmom mešanih spremenljivk (angl. Mixed-Variable Genetic Algorithm) in uvedene so zgodnje omejitve tako, da so računsko zahtevni nosilnostni preračuni izvajani le na obetavnih osebkih. Izbran je material, toplotna obdelava, ležaji, tesnila in način mazanja. Rešitev izbrana iz Pareto fronte je validirana v okolju KISSsoft in zmodeliran je 3D model.

Language:Slovenian
Keywords:nesamozapornost, planetno gonilo, genetski algoritem, večkriterijska optimizacija, robotika
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XXVI, 56 str.
PID:20.500.12556/RUL-171910 This link opens in a new window
UDC:621.833.6:004.89(043.2)
COBISS.SI-ID:248559619 This link opens in a new window
Publication date in RUL:04.09.2025
Views:161
Downloads:21
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of a backdrivable planetary gearbox
Abstract:
In the thesis, we present the development process of a backdrivable planetary gear train of Wolfrom topology. The starting point is an analytical gear model that integrates geometry, kinematics, forces, losses and load-carrying capacity verification, according to ISO 6336 in regards to tooth bending strength and pitting. The system is optimized in regards to multiple objectives using a genetic algorithm. The optimization is carried out with a Mixed-Variable Genetic Algorithm, with early constraints implemented, so that computationally expensive load-capacity calculations are performed only on promising individuals. Material, heat treatment, bearing, shaft seals and lubrication type are all chosen. The chosen Pareto-optimal solution is validated in KISSsoft and a 3D model is designed.

Keywords:backdrivability, planetary gear train, genetic algorithm, multi-objective optimization, robotics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back