Details

A type theory for synthetic categories : master's thesis
ID Kobe, Ivan (Author), ID Bauer, Andrej (Mentor) More about this mentor... This link opens in a new window, ID Rijke, Egbert Maarten (Comentor)

.pdfPDF - Presentation file, Download (1,06 MB)
MD5: 67009994C1550DC52987EA4C1203F441

Abstract
In this thesis, we study the interactions of dependent type theory and synthetic category theory. Our main goal is to formally express the axioms of synthetic category theory as type-theoretic derivation rules. In the first chapter, we present a detailed account of Grothendieck-Maltsiniotis $\omega$-categories, an algebraic notion of higher categories, which can be recovered syntactically as models of the type theory CaTT, which we present in the second chapter. We introduce an analogous notion of $(\omega,n)$-categories, together with a family of corresponding type theories, which we prove again recover the notion syntactically. In the third chapter, we formalize fully coherent universal properties of categorical constructions, extending modified CaTT with additional term construction rules. To this end, we introduce the framework of type morphisms and pointwise homotopies, and study the functoriality properties of the whiskering and product constructions. We implement the crucial parts of the third chapter in the computer proof assistant Agda.

Language:English
Keywords:dependent type theory, synthetic category theory, higher categories
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-171821 This link opens in a new window
UDC:510.6
COBISS.SI-ID:247221507 This link opens in a new window
Publication date in RUL:03.09.2025
Views:859
Downloads:191
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Teorija tipov za sintetične kategorije
Abstract:
V magistrskem delu raziskujemo povezave med teorijo odvisnih tipov in sintetično teorijo kategorij. Naš glavni cilj je formalno izraziti aksiome sintetične teorije kategorij kot pravila sklepanja v teoriji tipov. V prvem poglavju podamo podroben prikaz Grothendieck-Maltsiniotisovih $\omega$-kategorij. Ta algebraični model višjih kategorij lahko ekvivalentno predstavimo tudi sintaktično, kot modele teorije tipov CaTT, ki jo obravnavamo v drugem poglavju. Vpeljemo analogno definicijo $(\omega,n)$-kategorij, skupaj z družino teorij tipov, in tudi zanje dokažemo korespondenco med sintakso in semantiko. V tretjem poglavju modificirano CaTT razširimo z dodatnimi pravili za konstrukcijo termov, s katerimi formaliziramo koherentne univerzalne lastnosti kategornih konstrukcij. V ta namen vpeljemo pojma morfizmov tipov in prirejenih homotopij, in preučimo funktorialnosti podobne lastnosti posplošene kompozicije in produktov. Ključne dele tretjega poglavja implementiramo v računalniškem dokazovalniku Agda.

Keywords:teorija odvisnih tipov, sintetična teorija kategorij, višje kategorije

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back