Details

On geometric representation of ${\mathbb L}$-homology classes
ID Hegenbarth, Friedrich (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (308,88 KB)
MD5: 33D73648341C38711B82546EEEA142C4
URLURL - Source URL, Visit https://link.springer.com/chapter/10.1007/978-3-031-81414-3_19 This link opens in a new window

Abstract
In this chapter we give a geometric representation of $H_{n}(B;{\mathbb L})$ classes, where ${\mathbb L}$ is the $4$-periodic surgery spectrum, by establishing a relationship between the normal cobordism classes ${{\mathcal N}}^{H}_{n}(B,\partial)$ and the $n$-th ${\mathbb L}$-homology of $B$, representing the elements of $H_{n}(B;{\mathbb L})$ by normal degree one maps with a reference map to $B$. More precisely, we prove that for every $n \ge 6$ and every finite complex $B$, there exists a map $\Gamma: H_n(B;{\mathbb L}) \longrightarrow {\mathcal N}^{H}_{n}(B,\partial)$.

Language:English
Keywords:generalized manifolds, cell-like map, normal degree one map, Steenrod L-homology, Poincaré duality complex, periodic surgery spectrum L, geometric representation, L-homology classes
Work type:Other
Typology:1.16 - Independent Scientific Component Part or a Chapter in a Monograph
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Author Accepted Manuscript
Year:2025
Number of pages:Str. 429-436
PID:20.500.12556/RUL-171742 This link opens in a new window
UDC:515.1
COBISS.SI-ID:244030211 This link opens in a new window
Publication date in RUL:01.09.2025
Views:227
Downloads:57
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a monograph

Title:Essays on topology : dedicated to Valentin Poénaru
Editors:Louis Funar, Athanase Papadopoulos
Place of publishing:Cham
Publisher:Springer
Year:2025
ISBN:978-3-031-81413-6
COBISS.SI-ID:244025347 This link opens in a new window

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0292
Name:Topologija in njena uporaba

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4031
Name:Računalniška knjižnica za zavozlane strukture in aplikacije

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4001
Name:Izbrani problemi iz uporabne in računske topologije

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0278
Name:Biološka koda vozlov - identifikacija vzorcev vozlanja v biomolekulah z uporabo umetne inteligence

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0114
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0083
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back