Details

Dinamično optimiziranje proizvodnih procesov v avtomobilski industriji maloserijskih komponent prestižnih avtomobilov
ID Kulovec, Domen (Author), ID Rihar, Lidija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (15,17 MB)
MD5: B3F3951C3AB038973C670F29DBBAA011

Abstract
V magistrski nalogi smo analizirali vpliv stohastičnih pojavov v ključnih fazah maloserijske avtomobilske proizvodnje na celotno učinkovitost in robustnost sistema. Uporabili smo pristop digitalnega dvojčka, kjer smo za faze, kot so brizganje, vizualna kontrola, pakiranje in transport, določili ustrezne statistične porazdelitve (normalna, log-normalna, triangularna, eksponentna). Simulacije so pokazale, da največje tveganje za nastanek ozkih grl in kopičenje zalog predstavljajo nepredvidljive motnje v ročnih fazah, medtem ko avtomatizirani postopki zagotavljajo večjo stabilnost in pretočnost. Optimizacija teh najbolj spremenljivih faz se je izkazala kot ključna za izboljšanje učinkovitosti, zanesljivosti in konkurenčnosti proizvodnje.

Language:Slovenian
Keywords:stohastičnost, digitalni dvojček, proizvodna linija, simulacija, avtomatizacija, optimizacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XXII, 101 str.
PID:20.500.12556/RUL-171689 This link opens in a new window
UDC:658.51:629.331:004.94(043.2)
COBISS.SI-ID:247336707 This link opens in a new window
Publication date in RUL:30.08.2025
Views:230
Downloads:37
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Dynamic optimization of production processes in the automotive industry for low-volume components of premium vehicles
Abstract:
In this master's thesis, we analyzed the impact of stochastic phenomena in key stages of low-volume automotive production on the overall efficiency and robustness of the system. A digital twin approach was used, applying precise statistical distributions (normal, log-normal, triangular, exponential) to model processes such as injection molding, visual inspection, packaging, and transport. Simulation results revealed that unpredictable disruptions in manual phases pose the greatest risk for bottlenecks and work-in-progress accumulation, while automated processes ensure greater stability and throughput. Optimizing and automating the most variable phases proved to be essential for improving production efficiency, reliability, and competitiveness.

Keywords:stochasticity, digital twin, production line, simulation, automation, optimization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back