Details

Evolucija populacij rešitev nekaterih težkih problemov na grafih
ID Savnik, Jure (Author), ID Fijavž, Gašper (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1006,76 KB)
MD5: 3F836C880154F44449547A0CC767E990

Abstract
V delu eksperimentalno preverimo, ali populacija genetskih algoritmov z uporabo šibke selekcije konvergira v populacijo, ki je sestavljena izključno iz modelov. Pri tem se osredotočimo na problem minimalnega pokritja, minimalne dominantne množice in 3-barvanja. S tem nadgradimo delo Livnata in soavtorjev, ki so to lastnost dokazali za problem izpolnjivosti, in Širclja, ki je problem izpolnjivosti eksperimentalno obravnaval. V delu predstavimo izbiro vrednosti za izvedbo preizkusov za posamezen problem. Preizkuse smo nato izvedli z različnimi vrednostmi parametra šibke selekcije in velikosti populacije. Za reprodukcijo smo uporabili produktno reprodukcijo in rekombinacijo. Obe vrsti reprodukcije smo obravnavali tudi z dodatkom mutacije. Pri minimalnem pokritju in minimalni dominantni množici smo dokazali, da ob zadostno veliki vrednosti zmnožka velikosti populacije in parametra šibke selekcije dosežemo konvergenco v populacijo modelov, ki pa kvalitativno niso tako dobri kot optimalne rešitve. Pri problemu 3-barvanja smo konvergenco v modelno populacijo dosegli le v omejenem številu primerov.

Language:Slovenian
Keywords:genetski algoritmi, evolucija, NP-težki problemi, grafovski problemi, konvergenca, modelna populacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-171656 This link opens in a new window
COBISS.SI-ID:247770115 This link opens in a new window
Publication date in RUL:29.08.2025
Views:198
Downloads:39
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Evolution of solution populations of some hard graph problems
Abstract:
In this work, we experimentally verify if a population of genetic algorithms employing weak selection converges to a population composed exclusively of models. We investigate the minimum vertex cover problem, the minimum dominating set problem, and the 3-coloring problem. In doing so, we extend the work of Livnat et al., who established this property for the satisfiability problem, and Šircelj, who examined the satisfiability problem through experimental analysis. We detail the selection of parameter values used for the experimental evaluation of each problem. The experiments were conducted using varying values of the weak selection parameter and population size. We used two types of reproduction; product reproduction and recombination. We also used both methods in combination with mutation. For the minimum vertex cover and minimum dominating set problems, we demonstrate that, given a sufficiently large product of population size and the weak selection parameter, the population converges to a population of models. However, these models are qualitatively inferior to the optimal solutions. In the case of the 3-coloring problem, convergence to a model population was observed only in a limited number of instances.

Keywords:genetic algorithms, evolution, NP-hard problems, graph problems, convergence, model population

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back