Details

Lokalizacija in identifikacija sile udarca na ploščo z uporabo nevronskih mrež
ID Podlipnik, Enej (Author), ID Slavič, Janko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,72 MB)
MD5: 2664CCFD72147C5E0AFECE72C4F46C19

Abstract
V zaključni nalogi je predstavljen razvoj prototipa na dotik občutljivega vmesnika, ki za določanje lokacije in velikosti sile dotika ne uporablja klasičnih tehnologij, temveč analizo dinamičnega odziva mehanske strukture. V ta namen je bil zasnovan eksperimentalni sistem s 3D-natisnjeno ploščo in piezouporovnimi zaznavali. Zbrani signali dinamičnega odziva so bili uporabljeni za učenje konvolucijske nevronske mreže z večopravilno arhitekturo. Primerjalna analiza je pokazala, da je klasifikacijski pristop, ki površino razdeli na diskretna območja, v primerjavi z regresijskim pristopom robustnejši in dosega višjo zanesljivost. Klasifikacijski model je med vrednotenjem na testnem naboru podatkov dosegel 96% točnost pri določanju lokacije in 88% točnost pri klasifikaciji velikosti sile udarca. Delo dokazuje, da je z analizo strukturne dinamike in uporabo podatkovnih pristopov mogoče razviti učinkovit alternativni vmesnik na dotik.

Language:Slovenian
Keywords:uporabniški vmesniki, konvolucijske nevronske mreže, strukturna dinamika, zaznavanje udarca, piezouporovnost, 3D-tisk
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XV, 48 f.
PID:20.500.12556/RUL-171545 This link opens in a new window
UDC:531.391:004.5:004.032.26(043.2)
COBISS.SI-ID:247477251 This link opens in a new window
Publication date in RUL:28.08.2025
Views:144
Downloads:36
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Impact localization and identification on a plate using neural networks
Abstract:
This final thesis presents the development of a prototype touch-sensitive interface. For determining the location and force amplitude of the touch, the interface does not rely on conventional technologies, but rather on the analysis of the dynamic response of a mechanical structure. For this purpose, an experimental system with a 3D-printed plate and piezoresistive sensors was designed. The collected dynamic response signals were used to train a convolutional neural network with a multi-task architecture. A comparative analysis showed that the classification approach, which divides the surface into discrete areas, is more robust and achieves higher reliability if compared to the regression approach. During evaluation on the test set, the classification model achieved 96% accuracy in determining the location and 88% accuracy in classifying the impact force amplitude. The work demonstrates that by analyzing structural dynamics and using data-driven approaches, it is possible to develop an effective alternative touch interface.

Keywords:user interfaces, convolutional neural networks, structural dynamics, impact detection, piezoresistivity, 3D printing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back